Skip to main content
Log in

Connection between the 2-body energy of the Kaxiras-Pandey and the Biswas-Hamann potentials

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Relationship among interatomic potential functions can be useful in shedding insight on the extent of similarity, and in obtaining a potential function from parameters of another potential function. The 2-body portion of the Biswas-Hamann (BH) and the Kaxiras-Pandey (KP) potential functions are related by equating both functions, as well as their corresponding derivatives up to the third order at the equilibrium bond length. Validity of the parametric relationship is verified by plotting the loose form of the 2-body BH potential in terms of KP parameters and comparing it with the KP potential function. The parametric relationships developed herein are then compared with those that concern other potential functions, with particular emphasis on the scaling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Erkoc: Phys. Rep.278 (1997) 79.

    Article  ADS  Google Scholar 

  2. T.C. Lim: J. Math. Chem.33 (2003) 29.

    Article  MATH  MathSciNet  Google Scholar 

  3. T.C. Lim: J. Math. Chem.32 (2002) 249.

    Article  MATH  MathSciNet  Google Scholar 

  4. T.C. Lim: J. Math. Chem.31 (2002) 421.

    Article  MATH  MathSciNet  Google Scholar 

  5. T.C. Lim: J. Math. Chem.33 (2003) 279.

    Article  MATH  MathSciNet  Google Scholar 

  6. T.C. Lim: J. Math. Chem.34 (2003) 221.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. T.C. Lim: Z. Naturforsch. A58 (2003) 615.

    Google Scholar 

  8. T.C. Lim: MATCH Commun. Math. Comput. Chem.49 (2003) 155.

    MATH  ADS  Google Scholar 

  9. T.C. Lim: MATCH Commun. Math. Comput. Chem.50 (2004) 185.

    MATH  ADS  Google Scholar 

  10. A.M. Stoneham, V.T.B. Torres, P.M. Masri, and H.R. Schober: Philos. Mag. A58 (1988) 93.

    Article  ADS  Google Scholar 

  11. H. Balamane, T. Halicioglu, and W.A. Tiller: Phys. Rev. B46 (1992) 2250.

    Article  ADS  Google Scholar 

  12. R. Biswas and D.R. Hamann: Phys. Rev. Lett.55 (1985) 2001.

    Article  ADS  Google Scholar 

  13. J.N. Murrell and R.E. Mottram: Mol. Phys.69 (1990) 571.

    Article  ADS  Google Scholar 

  14. T.C. Lim: Z. Naturforsch. A59 (2004) 116.

    Google Scholar 

  15. R. Bauer, W. Maysenholder, and A. Seeger: Phys. Lett. A90 (1982) 55.

    Article  ADS  Google Scholar 

  16. T.C. Lim: Czech. J. Phys.54 (2004) 553.

    Article  ADS  Google Scholar 

  17. E. Kaxiras and K.C. Pandey: Phys. Rev. B38 (1988) 12736.

    Article  ADS  Google Scholar 

  18. J.E. Lennard-Jones: Proc. Royal Soc. London A106 (1924) 463.

    Article  ADS  Google Scholar 

  19. P.M. Morse: Phys. Rev.34 (1929) 57.

    Article  ADS  Google Scholar 

  20. E. Pearson, T. Takai, T. Halicioglu, and W.A. Tiller: J. Cryst. Growth70 (1984) 33.

    Article  ADS  Google Scholar 

  21. R.A. Buckingham: Proc. Royal Soc. London A168 (1938) 264.

    Article  ADS  Google Scholar 

  22. M.J. Hwang, T.P. Stockfisch, and A.T. Hagler: J. Am. Chem. Soc.116 (1994) 2515.

    Article  Google Scholar 

  23. J.R. Maple, M.J. Hwang, T.P Stockfisch, U. Dinur, M. Waldman, C.S. Ewig, and A.T. Hagler: J. Comput. Chem.15 (1994) 162.

    Article  Google Scholar 

  24. S. Barlow, A.L. Rohl, S. Shi, C.M. Freeman, and D. O’Hare: J. Am. Chem. Soc.118 (1996) 7578.

    Article  Google Scholar 

  25. G. Nemethy, K.D. Gibsen, K.A. Palmer, C.N. Yoon, G. Paterlini, A. Zagari, S. Rumsey, and H.A. Sheraga: J. Phys. Chem.96 (1992) 6472.

    Article  Google Scholar 

  26. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz Jr, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman: J. Am. Chem. Soc.117 (1995) 5179.

    Article  Google Scholar 

  27. S.L. Mayo, B.D. Olafson, and W.A. Goddard III: J. Phys. Chem.94 (1990) 8897.

    Article  Google Scholar 

  28. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff: J. Am. Chem. Soc.114 (1992) 10024.

    Article  Google Scholar 

  29. N. Karasawa, S. Dasgupta, and W.A. Goddard III: J. Phys. Chem.95 (1991) 2260.

    Article  Google Scholar 

  30. C.F. Fan, T. Cagin, Z.M. Chen, and K.A. Smith: Macromol.27 (1994) 2383.

    Article  ADS  Google Scholar 

  31. S.D. Morley, R.J. Abraham, I.S. Haworth, D.E. Jackson, M.R. Saunders, and J.G. Vinter: J. Comput.-Aided Mol. Design5 (1991) 475.

    Article  ADS  Google Scholar 

  32. R. Rydberg: Z. Phys.73 (1931) 376.

    MATH  ADS  Google Scholar 

  33. P. Huxley and J.N. Murrell: J. Chem. Soc. Faraday Trans.79 (1983) 323.

    Article  Google Scholar 

  34. A.R. Al-Derzi, R.L. Johnston, J.N. Murrell, and J.A. Rodriguez-Ruiz: Mol. Phys.73 (1991) 265.

    Article  ADS  Google Scholar 

  35. S. Li, R.L. Johnston, and J.N. Murrell: J. Chem. Soc. Faraday Trans.88 (1992) 1229.

    Article  Google Scholar 

  36. H. Cox, R.L. Johnston, and J.N. Murrell: J. Solid State Chem.145 (1999) 517.

    Article  ADS  Google Scholar 

  37. T.C. Lim: J. Math. Chem.36 (2004) 147.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, TC. Connection between the 2-body energy of the Kaxiras-Pandey and the Biswas-Hamann potentials. Czech J Phys 54, 947–963 (2004). https://doi.org/10.1023/B:CJOP.0000042647.51651.2a

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CJOP.0000042647.51651.2a

PACS

Key words

Navigation