Skip to main content
Log in

Self-organized Monte Carlo localization of critical point via linear filtering

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Self-organized Monte Carlo simulations are suggested. Their essence is artificial dynamics consisting of the well-known single-spin-flip Metropolis algorithm supplemented by biased random walk in temperature space. The action of walker is driven by feedback utilizing the linear filtering recursion based on the instantaneous estimates of Binder cumulants. The simulation for 2d Ising model demonstrates that the mean temperature typical for the steady noncanonical equilibrium regime properly approximates the true critical temperature. The estimates of the critical Binder cumulants and critical exponents are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller: J. Chem. Phys.21 (1953) 1087.

    Article  ADS  Google Scholar 

  2. K. Binder and D.W. Heermann:Monte Carlo Simulation in Statistical Physics. Springer, Berlin, 1998.

    Google Scholar 

  3. S. Ma: Phys. Rev. Lett.37 (1976) 461.

    Article  ADS  Google Scholar 

  4. R.H. Swendsen: Phys. Rev. B20 (1979) 2080.

    Article  ADS  Google Scholar 

  5. K.E. Schmidt: Phys. Rev. Lett.51 (1983) 2175.

    Article  ADS  Google Scholar 

  6. H.H. Hahn and T.S.J. Streit: Physica A154 (1988) 108.

    Article  ADS  Google Scholar 

  7. R.H. Swendsen and J.S. Wang: Phys. Rev. Lett.58 (1987) 86.

    Article  ADS  Google Scholar 

  8. U. Wolff: Phys. Rev. Lett.62 (1989) 361.

    Article  ADS  Google Scholar 

  9. A.M. Ferrenberg and R.H. Swendsen: Phys. Rev. Lett.61 (1988) 2635;63 (1989) 1195.

    Article  ADS  Google Scholar 

  10. P. Bak, C. Tang, and K. Wiesenfeld: Phys. Rev. A38 (1988) 364; Phys. Rev. Lett.59 (1987) 381.

    Article  ADS  MathSciNet  Google Scholar 

  11. U.L. Fulco, L.S. Lucerna, and G.M. Viswanathan: Physica A264 (1999) 171.

    Article  Google Scholar 

  12. H. Robbins and S. Munroe: Ann. Math. Stat.22 (1951) 400.

    Google Scholar 

  13. Y. Tomita and Y. Okabe: Phys. Rev. Lett.86 (2001) 572.

    Article  ADS  Google Scholar 

  14. D. Sornette, A. Johansen, and I. Dornic: J. Phys. I France5 (1995) 325.

    Article  Google Scholar 

  15. J.C. Principe, N.R. Euliano, and W.C. Lefebvre:Neural and adaptive systems: Fundamentals through simulations. John Wiley & Sons, Inc., 2000.

  16. P. Buonsante, R. Burioni, D. Cassi, and A. Vezzani: Phys. Rev. E66 (2002) 36121.

    Article  ADS  Google Scholar 

  17. P.L. Garrido, A. Labarta, and J. Marro: J. Stat. Phys.49 (1987) 551.

    Article  MathSciNet  Google Scholar 

  18. L. Onsager: Phys. Rev.65 (1944) 117.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. R.J. Baxter:Exactly Solved Models in Statistical Mechanics. Academic Press, London, 1982.

    MATH  Google Scholar 

  20. A.D. Bruce: J. Phys. A18 (1985) 873.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horváth, D., Gmitra, M. & Kuscsik, Z. Self-organized Monte Carlo localization of critical point via linear filtering. Czech J Phys 54, 921–926 (2004). https://doi.org/10.1023/B:CJOP.0000042644.62708.7b

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CJOP.0000042644.62708.7b

PACS

Key words

Navigation