Skip to main content
Log in

Shock-wave velocity of a femtosecond-laser-produced plasma

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Fluorescence measurements have been used to characterize the velocity of atoms in a femtosecond-laser-produced plasma. Nanogram amounts of a copper sample were ablated by the focused radiation (λ=775 nm) of an all-solid-state laser. The laser was operated at a pulse rate of 10 Hz with an energy of 200µJ per pulse. The microplasma expanded into a defined argon atmosphere of pressures between 0.02 and 850 mbar. Atomic fluorescence was excited in the laser plume by a dye-laser pulse with the wavelength set to the line Cu I 282.4 nm. The narrowed beam of the dye-laser was directed into the plasma at different heights above the sample surface. The fluorescence radiation was measured with an échelle-spectrometer, equipped with an intensified-charge-coupled device as the detector. The velocity depends strongly on the pressure of the ambient atmosphere and the distance from the sample surface. The highest velocity found at an argon pressure of 0.02 mbar was 1.0×106 cm s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder: Spectrochim. Acta Part B55 (2000) 1771.

    Article  Google Scholar 

  2. M.K. Kim, T. Takao, Y. Oki, and M. Maeda: Jpn. J. Appl. Phys. Part 1,39 (2000) 6277.

    Article  Google Scholar 

  3. V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, and R. Hergenröder: J. Anal. At. Spectrom.16 (2001) 616.

    Article  Google Scholar 

  4. V. Margetic, T. Ban, F. Leis, K. Niemax, and R. Hergenröder: Spectrochim. Acta B58 (2003) 415.

    Article  Google Scholar 

  5. P. Serra, J.M. Fernándes-Pradas, Navarro, and J.L. Morenza: Appl. Phys. A 69 [Suppl.] (1999) S183.

  6. F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima: Appl. Phys. A69 [Suppl.] (1999) S223.

  7. L. Escobar-Alarcón, E. Camps, E. Haro-Poniatowski, M. Villagran, and C. Sanchez: Appl. Surf. Sci.197/198 (2002) 192.

    Article  Google Scholar 

  8. Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor: Appl. Phys. A69 [Suppl.] (1999) S133.

  9. C. Grivas, H. Niino, and A. Yabe: Appl. Phys. A69 [Suppl.] (1999) S159.

  10. T.Y. Choi, D.J. Hwang, and C.P. Grigoropoulos: Appl. Surf. Sci.197/198 (2002) 720.

    Article  Google Scholar 

  11. N. Arnold, J. Gruber, and J. Heitz: Appl. Phys. A69 [Suppl.] (1999) 87.

    Article  ADS  Google Scholar 

  12. W. Sdorra, and K. Niemax: Spectrochim. Acta B45 (1990) 917.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ota Samek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margetic, V., Ban, T., Samek, O. et al. Shock-wave velocity of a femtosecond-laser-produced plasma. Czech J Phys 54, 423–429 (2004). https://doi.org/10.1023/B:CJOP.0000020582.83501.59

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CJOP.0000020582.83501.59

PACS

Key words

Navigation