Skip to main content
Log in

Observation of Calcium Atomic Fluorescence in Laser-Induced Plasma with High Spatial Resolution

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Optimum experimental parameters for studying distribution of calcium atoms in laser-induced plasma at low pressure (16 Torr) by means of atomic fluorescence are determined. The scheme of nonresonant fluorescence based on transitions between 4s4p (3P°)–4p2 (3P) states at 428.30 and 430.25 nm is proposed and implemented for excitation and observation of fluorescence for the first time. Based on analysis of the influence of crater deepening on intensity of fluorescence signal and comparison of fluorescence saturation curves, we demonstrate that a pure calcium carbonate is preferable as a target for observation of fluorescence. Substantial (by a factor of 62) enhancement of the fluorescence signal under optimum conditions allows neglecting the contribution of spontaneous emission to line intensities. We also demonstrate that temperature has low impact on population of the level used for excitation of fluorescence in the temperature range observed in the laser-induced plasma. These circumstances allowed spatially measurements to establish the lateral distribution of calcium atoms in plasma after optimization of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Bárdos and H. Baránková, Thin Solid Films 518, 6705 (2010).

    Article  ADS  Google Scholar 

  2. K. D. Weltmann, E. Kindel, T. von Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, Pure Appl. Chem. 82, 1223 (2010).

    Article  Google Scholar 

  3. N. B. Zorov, A. M. Popov, S. M. Zaytsev, and T. A. Labutin, Russ. Chem. Rev. 84, 1021 (2015).

    Article  ADS  Google Scholar 

  4. R. Thomas, Practical Guide to ICP-MS2008.

  5. A. M. Popov, A. A. Berezhnoy, J. Borovička, T. A. Labutin, S. M. Zaytsev, and A. V. Stolyarov, Mon. Not. R. Astron. Soc. 500, 4296 (2021).

    Article  ADS  Google Scholar 

  6. H. F. Döbele, T. Mosbach, K. Niemi, and V. S.-v. d. Gathen, Plasma Sources Sci. Technol. 14 (2), S31 (2005).

    Article  Google Scholar 

  7. B. C. Castle, K. Visser, B. W. Smith, and J. D. Winefordner, Appl. Spectrosc. 51, 1017 (1997).

    Article  ADS  Google Scholar 

  8. S. V. Shabanov and I. B. Gornushkin, Spectrochim. Acta, Part B 66, 413 (2011).

    Article  ADS  Google Scholar 

  9. I. B. Gornushkin, S. V. Shabanov, and U. Panne, J. Anal. At. Spectrom. 26, 1457 (2011).

    Article  Google Scholar 

  10. C. J. Dasch, Appl. Opt. 31, 1146 (1992).

    Article  ADS  Google Scholar 

  11. M. A. Bolshov, Anal. Bioanal. Chem. 355, 549 (1996).

    Article  Google Scholar 

  12. J. Sneddon, T. L. Thiem, and Y.-I. Lee, Lasers in Analytical Atomic Spectroscopy (VCH, New York, 1997).

    Google Scholar 

  13. A. N. Zaidel’, Atomic Fluorescence Analysis: Physical Basis of the Method (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  14. A. A. Berezhnoy, J. Borovička, J. Santos, J. F. Rivas-Silva, L. Sandoval, A. V. Stolyarov, and A. Palma, Planet. Space Sci. 151, 27 (2018).

    Article  ADS  Google Scholar 

  15. B. W. Smith, M. R. Glick, K. N. Spears, and J. D. Winefordner, Appl. Spectrosc. 43, 376 (1989).

    Article  ADS  Google Scholar 

  16. S. Zaytsev, A. Popov, N. Zorov, and T. Labutin, J. Instrum. 9, P06010 (2014).

    Article  Google Scholar 

  17. C. Aragón and J. A. Aguilera, Spectrochim. Acta, Part B 63, 893 (2008).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation, project no. 18-13-00269-Π.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Labutin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beglaryan, B.G., Zakuskin, A.S. & Labutin, T.A. Observation of Calcium Atomic Fluorescence in Laser-Induced Plasma with High Spatial Resolution. Opt. Spectrosc. 130, 419–424 (2022). https://doi.org/10.1134/S0030400X2208001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X2208001X

Keywords:

Navigation