Skip to main content
Log in

Global Bifurcations of Periodic Solutions of the Restricted Three Body Problem

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We describe global bifurcations from the libration points of non-stationary periodic solutions of the restricted three body problem. We show that the only admissible continua of non-stationary periodic solutions of the planar restricted three body problem, bifurcating from the libration points, can be the short-period families bifurcating from the Lagrange equilibria L μ4 , L μ5 . We classify admissible continua and show that there are possible exactly six admissible continua of non-stationary periodic solutions of the planar restricted three body problem. We also characterize admissible continua of non-stationary periodic solutions of the spatial restricted three body problem. Moreover, we combine our results with the Déprit and Henrard conjectures (see [8]), concerning families of periodic solutions of the planar restricted three body problem, and show that they can be formulated in a stronger way. As the main tool we use degree theory for SO(2)-equivariant gradient maps defined by the second author in [25].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A. and Coti Zelati, V.: 1993, Periodic Solutions of Singular Lagrangian Systems, PNLDE 10, Birkhäuser.

  2. Bartsch, T.: 1993, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Mathematics 1560, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  3. Boccaletti, D. and Pucacco, G.: 1996, Theory of Orbits I: Integrable Systems and Nonperturbative Methods, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  4. Boccaletti, D. and Pucacco, G.: 1999, Theory of Orbits II: Perturbative and Geometrical Methods, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  5. Bruno, A. D.: 1994, The Restricted 3-Body Problem: Plane Periodic Orbits, de Gruyter Expositions in Mathematics 17, Walter de Gruyter, Berlin-New York.

    Google Scholar 

  6. Dancer, E. N.: 1985, A New Degree for S 1 -invariant Mappings and Applications, Ann. Inst. H. Poincaré, Anal. Nonl. 2, pp. 473–486.

    Google Scholar 

  7. Dancer, E. N. and Rybicki, S.: 1999, A note on periodic solutions of autonomous Hamiltonian systems emanating from degenerate stationary solutions, Diff. Int. Equat. 12(2), 147–160.

    Google Scholar 

  8. Déprit, A. and Henrard, J.: 1969, The Trojan manifolds-survey and conjectures, In: G. E. O. Giacaglia (ed.), Proc. Symp. Conducted Univ. São Paulo, the Technical Institute of Aeronautics of Sao José dos Campos, and the National Observatory of Rio de Janeiro, at the University of Sap Paulo, Sau Paulo, Brasil, 4-12 September, Periodic Orbits, Stability and Resonances, D. Reidel Publishing Company, Dordrecht-Holland, 1–18.

    Google Scholar 

  9. G?ba, K.: 1997, Degree for gradient equivariant maps and equivariant Conley index, In: M. Matzeu and A. Vignoli (eds) Topological Non-linear Analysis, Degree, Singularity and Variations, PNLDE 27, Birkhäauser, 247–272.

  10. G?ba, K. and Marzantowicz, W.: 1993, Global bifurcations of periodic solutions, Topol. Meth. Nonl. Anal. 1, 67–93.

    Google Scholar 

  11. G?ba, K., Massabó, I. and Vignoli, A.: 1990, On the Euler characteristic of equivariant vector fields, Boll. U. Math. Italiana 4A, 243–251.

    Google Scholar 

  12. Hartman, P.: 1964, Ordinary Differential Equations, John Wiley & Sons, Inc.

  13. Hénon, M.: 1997, generating families in the restricted three-body problem, Lecture Notes in Physics: Monographs 52, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  14. Ize, J., Massabo, I. and Vignoli, A.: 1992, Degree Theory for Equivariant Maps the General SO(2)-Action, Momoirs of the AMS 100, No. 481.

  15. Laub, A. J. and Meyer, K.: 1974, Canonical forms for symplectic and Hamiltonian matrices, Celest. Mech. 9, 213–238.

    Google Scholar 

  16. Maciejewski, A. and Rybicki, S.: 1998, Global bifurcations of periodic solutions of Hénon-Heiles system via degree for S1-equivariant orthogonal maps, Rev. Math. Phys. 10(8), 1125–1146.

    Google Scholar 

  17. Maciejewski, A. and Rybicki, S.: 2001, Global bifurcations of periodic solutions of the Hill Lunar problem, Celestial Mech. and Dynamical Astronomy 81, 279–297.

    Google Scholar 

  18. Mawhin, J. and Willem, M.: 1989, Critical point theory and Hamiltonian systems, Appl. Math. Sci. 74, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  19. Meyer, K. R. and Hall, G. R.: 1992, Introduction to Hamiltonian dynamical systems and the N-body problem, Appl. Math. Sci. 90, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  20. Meyer, K. R. and Palmore, J. I.: 1970, A new class of periodic solutions in the restricted three-body problem, J. Diff. Equat. 44, 283–272.

    Google Scholar 

  21. Rabinowitz, P. H.: 1970, Nonlinear Sturm-Liouville problems for second order ordinary differential equations, CPAM, Vol. 23, 939–961.

    Google Scholar 

  22. Rabinowitz, P. H.: 1971, Some global results for nonlinear eigenvalue problems, J. Func. Anal. 7, 487–513.

    Google Scholar 

  23. Rabinowitz, P. H.: 1971, Global theorems for nonlinear eigenvalue problems and applications, In: E. H. Zarantonello (ed.), Contributions to Nonlinear Functional Analysis, Academic Press, New York, 11–36.

    Google Scholar 

  24. Rabinowitz, P. H.: 1986, Minimax methods in critical point theory with applications to differential equations, Reg. Conf. Ser. Math. 35, Providence, R.I., Am. Math. Soc.

    Google Scholar 

  25. Rybicki, S.: 1994, S1-degree for orthogonal maps and its applications to bifurcation theory, Nonlinear. Anal. TMA 23(1), 83–102.

    Google Scholar 

  26. Rybicki, S.: 1998, On periodic solutions of autonomous Hamiltonian systems via degree for S1-equivariant gradient maps, Nonlinear Anal. TMA 34(4), 537–569.

    Google Scholar 

  27. Rybicki, S.: 1997, Applications of degree for S1-equivariant gradient maps to variational nonlinear problems with S1-symmetries, Top. Meth. Nonlinear. Anal. 9(2), 383–417.

    Google Scholar 

  28. Szebehely, V.: 1967, Theory of Orbits, Academic Press, New York, London.

    Google Scholar 

  29. Struwe, M.: 1996, Variational Methods; Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, A Series of Modern Surveys in Mathematics 34, Springer, Berlin.

    Google Scholar 

  30. Wintner, A.: 1941, Analytical Fundations of Celestial Mechanics, Oxford University Press, Priceton.

    Google Scholar 

  31. Whittaker, E. T.: 1937, A Treatise on the Analytical dynamics of Particles and Rigid Bodies, Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciejewski, A.J., Rybicki, S.M. Global Bifurcations of Periodic Solutions of the Restricted Three Body Problem. Celestial Mechanics and Dynamical Astronomy 88, 293–324 (2004). https://doi.org/10.1023/B:CELE.0000017193.10060.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELE.0000017193.10060.ac

Navigation