Skip to main content
Log in

Bifurcation of periodic orbits for the N-body problem, from a nongeometrical family of solutions

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Given two positive real numbers M and m and an integer \(n>1\), it is well known that we can find a family of solutions of the \((n+1)\)-body problem where one body with mass M stays at the origin and the other n bodies, all with the same mass m, move on the xy plane following ellipses with eccentricity e. These periodic solutions were discovered by Lagrange and can be described analytically. In this paper, we prove the existence of periodic solutions of the \((n+1)\)-body problem; they are not-trivial in the sense that none of the bodies follows conics. Besides showing the existence of these periodic solutions, we point out a trivial family of non-periodic solutions for the \((n+1)\)-body problem that are easy to describe. In this way, we are considering three families of solutions of the \((n+1)\)-body problem: The Lagrange family, the family of non-periodic solution and the non-trivial solutions. The authors surprisingly discovered that a numerical solution of the 4-body problem—the one displayed on the video http://youtu.be/2Wpv6vpOxXk—is part of a family of periodic solutions (those that we are calling the non-trivial) that does not approach a solution in the Lagrange family, but it approaches a solution in the family that we are calling non-periodic solutions. After pointing this out, the authors find an exact formula for the bifurcation point in the non-periodic family and use it to show the mathematical existence of nonplanar periodic solutions of the \((n+1)\)-body problem for any pair of masses Mm and any integer \(n>1\) (the family that we are calling non-trivial). As a particular example, we find a non-trivial solution of the 4-body problem where three bodies with mass 3 moving around a body with mass 7 that moves up and down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Corbera, M., LLibre, J.: Families of periodic orbits for the spatial isosceles \(3\)-body problem. SIAM J. Math. Anal. 35(5), 1311–1346 (2000)

    Article  MathSciNet  Google Scholar 

  • Devaney, R.: Triple collision in the planar isosceles three-body problem. Invent. Math. 60, 249–267 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Galán, J., Nuñez, D., Rivera, A.: Quantitative stability of certain periodic solutions in the Sitnikov problem. SIAM J. Appl. Dyn. Syst. 17(1), 52–77 (2018)

    Article  MathSciNet  Google Scholar 

  • Hénon, H.: A family of periodic solutions of the planar three-body problem, and their stability. Celest. Mech. 13, 267–285 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  • Martinez, R., Simo, C.: Qualitative study of the planar isosceles three-body problem. Celest. Mech. 41, 179–251 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • McGehee, R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  • Meyer, K., Wang, Q.: The global phase structure of the three-dimensional isosceles three-body problem with zero energy. In: Hamiltonian Dynamical Systems (Cincinnati, OH, 1992). IMA Volumes in Mathematics and Applications, vol. 63, pp. 265–282. Springer, New York (1995)

  • Meyer, K., Schmidt, D.: Libration of central configurations and braided Saturn rings. Celest. Mech. Dyn. Astron. 55, 289–303 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Offin, D., Cabral, H.: Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete Contin. Dyn. Syst. Ser. S 2(2), 379–392 (2009)

    MathSciNet  MATH  Google Scholar 

  • Ortega, R., Rivera, A.: Global bifurcation from the center of mass in the Sitnikov problem. Discrete Contin. Dyn. Syst. Ser. B. 14(2), 719–732 (2010)

    MathSciNet  MATH  Google Scholar 

  • Perdomo, O.: A family of solution of the n body problem (2014). arXiv:1507.01100

  • Perdomo, O.: A small variation of the Taylor method and periodic solution of the 3-body problem (2015). arXiv:1410.1757

  • Perdomo, O.: Bifurcation in the family of periodic orbits for the spatial isosceles 3 body problem. Qual. Theory Dyn. Syst. (2017). https://doi.org/10.1007/s12346-017-0244-1

    Article  MATH  Google Scholar 

  • Perdomo, O.: The round Taylor method. Am. Math. Mon. 126(3), 237–251 (2019). https://doi.org/10.1080/00029890.2019.1546087

    Article  MathSciNet  MATH  Google Scholar 

  • Rivera, A.: Periodic solutions in the generalized Sitnikov \((N+1)\)-body problem. SIAM J. Appl. Dyn. Syst. 12(3), 1515–1540 (2013)

    Article  MathSciNet  Google Scholar 

  • Suarez, J.: Sobre la existencia de soluciones periódicas en el problema de \(N\)-cuerpos poligonal. Ph.D. Thesis. Universidad del Valle, Cali-Colombia (2020)

  • Xia, Z.: The existence of noncollision singularities in Newtonian systems. Ann. Math. 135, 411–468 (1992)

    Article  MathSciNet  Google Scholar 

  • Yan, D., Ouyang, T.: New phenomenons in the spatial isosceles three-body problem. Int. J. Bifur. Chaos Appl. Sci. Eng. 25, 9 (2015)

    Google Scholar 

Download references

Acknowledgements

The author O. Perdomo has been financially supported by AAUP research grant. The author A. Rivera has been financially supported by the Capital Semilla project (2020-2021) No. 2149. The author J. Suárez has been financially supported by a grant from the Colciencias Ph.D program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Rivera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1.1

A direct computation shows that the matrix \({\mathcal {R}}={\mathcal {R}}[2\pi /n]\) satisfies \(\displaystyle {{\mathcal {R}}^{-k}={\mathcal {R}}^{n-k}}\) for all integer k. Therefore,

$$\begin{aligned} \sum _{k=1,k\ne j}^{n}\dfrac{({\mathcal {R}}^{k-j}-I_{3})\mathbf{r }}{\Vert ({\mathcal {R}}^{k-j} -I_{3})\mathbf{r }\Vert ^{3}}=\sum _{k=1}^{n-1}\dfrac{({\mathcal {R}}^{k}-I_{3})\mathbf{r }}{\Vert ({\mathcal {R}}^{k}-I_{3})\mathbf{r }\Vert ^{3}}, \end{aligned}$$
(4.3)

with \(\mathbf{r }\in {\mathbb {R}}^3\) and each \(j\in \left\{ 1,\ldots ,n\right\} \). In consequence, if \(\mathbf{r }_{j}\), \(j=1,\ldots , n+1\) is the vector position of each body, and the fist n bodies move on the vertex of a regular polygon satisfying \(\mathbf{r }_{j}={\mathcal {R}}^{j-1}\mathbf{r }_{1}\) with \(j=2,\ldots , n\) of then the bodies satisfies the n-body problem if and only if

$$\begin{aligned} \begin{aligned} \ddot{\mathbf{r }}_{j}=&\sum _{k=1,k\ne j}^{N-1}\dfrac{m(\mathbf{r }_{k}-\mathbf{r }_{j})}{\Vert (\mathbf{r }_{k}-\mathbf{r }_{j})\Vert ^{3}}+\dfrac{M(\mathbf{r }_{N}-\mathbf{r }_{j})}{\Vert \mathbf{r }_{N}-\mathbf{r }_{j}\Vert ^{3}}. \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} {\mathcal {R}}^{j-1}\ddot{\mathbf{r }}_{1}= & {} \sum _{k=1,k\ne j}^{n}\dfrac{m({\mathcal {R}}^{k-1}-{\mathcal {R}}^{j-1})\mathbf{r }_{1}}{\Vert ({\mathcal {R}}^{k-1}-{\mathcal {R}}^{j-1})\mathbf{r }_{1}\Vert ^{3}}+\dfrac{M(\mathbf{r }_{n+1}-{\mathcal {R}}^{j-1}\mathbf{r }_{1})}{\Vert \mathbf{r }_{n+1}-{\mathcal {R}}^{j-1}\mathbf{r }_{1}\Vert ^{3}},\\ {\mathcal {R}}^{j-1}\ddot{\mathbf{r }}_{1}= & {} \sum _{k=1,k\ne j}^{n}\dfrac{m{\mathcal {R}}^{j-1}\Big [({\mathcal {R}}^{j-1})^{-1}{\mathcal {R}}^{k-1}-I_{3}\Big ]\mathbf{r }_{1}}{\Vert {\mathcal {R}}^{j-1}\Big [({\mathcal {R}}^{j-1})^{-1}{\mathcal {R}}^{k-1}-I_{3}\Big ]\mathbf{r }_{1}\Vert ^{3}}+\dfrac{M(\mathbf{r }_{n+1}-{\mathcal {R}}^{j-1}\mathbf{r }_{1})}{\Vert \mathbf{r }_{n+1}-{\mathcal {R}}^{j-1}\mathbf{r }_{1}\Vert ^{3}}, \\ {\mathcal {R}}^{j-1}\ddot{\mathbf{r }}_{1}= & {} \sum _{k=1,k\ne j}^{n}\dfrac{m{\mathcal {R}}^{j-1}\Big [({\mathcal {R}}^{j-1})^{-1}{\mathcal {R}}^{k-1}-I_{3}\Big ]\mathbf{r }_{1}}{\Vert {\mathcal {R}}^{j-1}({\mathcal {R}}^{k-j}-I_{3})\mathbf{r }_{1}\Vert ^{3}}+\dfrac{M(\mathbf{r }_{n+1}-{\mathcal {R}}^{j-1}\mathbf{r }_{1})}{\Vert {\mathcal {R}}^{j-1}({\mathcal {R}}^{n+1-j}\mathbf{r }_{n+1}-\mathbf{r }_{1})\Vert ^{3}},\\ \ddot{\mathbf{r }}_{1}= & {} \sum _{k=1,k\ne j}^{n}\dfrac{m({\mathcal {R}}^{k-j}-I_{3})\mathbf{r }_{1}}{\Vert ({\mathcal {R}}^{k-j}-I_{3})\mathbf{r }_{1}\Vert ^{3}}+\dfrac{M({\mathcal {R}}^{j-1})^{-1}(\mathbf{r }_{N}-{\mathcal {R}}^{j-1}\mathbf{r }_{1})}{\Vert {\mathcal {R}}^{n+1-j}\mathbf{r }_{n+1}-\mathbf{r }_{1}\Vert ^{3}}. \end{aligned}$$

Finally, by (4.3) we obtain

$$\begin{aligned} \ddot{\mathbf{r }}_{1}=\sum _{k=1}^{n-1}\dfrac{m({\mathcal {R}}^{k}-I_{3}) \mathbf{r }_{1}}{\Vert ({\mathcal {R}}^{k}-I_{3})\mathbf{r }_{1}\Vert ^{3}}+\dfrac{M( {\mathcal {R}}^{n+1-j}\mathbf{r }_{n+1}-\mathbf{r }_{1})}{\Vert {\mathcal {R}}^{n+1-j} \mathbf{r }_{n+1}-\mathbf{r }_{1}\Vert ^{3}}. \end{aligned}$$
(4.4)

Now we study each term in (4.4). Therefore, we rewrite the vector position \(\mathbf{r }_{1}\) in cylindric coordinates

$$\begin{aligned} \mathbf{r }_{1}(t)=(r(t)\cos \theta (t),r(t)\sin \theta (t),z_{1}(t)), \end{aligned}$$

and then

$$\begin{aligned} ({\mathcal {R}}^{k}-I_{3})\mathbf{r }_{1} = \begin{pmatrix} r(c_{k}-1)c_{\theta }-rs_{k}s_{\theta } \\ rs_{k}c_{\theta }+r(c_{k}-1)s_{\theta } \\ 0 \end{pmatrix} = \begin{pmatrix} r(c_{k+\theta }-c_{\theta }) \\ r(s_{k+\theta }-s_{\theta }) \\ 0 \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} c_{k}:=\cos \big (2\pi k/n\big ), \quad c_{\theta }:=\cos \theta \quad \text {and} \quad s_{k}:=\sin \big (2\pi k/n\big ), \quad s_{\theta }:=\sin \theta . \end{aligned}$$

From here it follows directly

$$\begin{aligned} \Vert ({\mathcal {R}}^{k}-I_{3})\mathbf{r }_{1}\Vert ^{3}=\Big (2(1-c_{k})r^{2}\Big )^{3/2}=\big (4 s^{2}_{k/2}r^{2}\big )^{3/2}=8\sin ^{3}\Big (\frac{\pi k}{n}\Big ) r^{3}. \end{aligned}$$

for all \(1\le k \le n-1.\) Moreover,

$$\begin{aligned} \Vert {\mathcal {R}}^{n+1-j}\mathbf{r }_{n+1}-\mathbf{r }_{1}\Vert =\Vert ({\mathcal {R}}^{j-1})^{-1}(\mathbf{r }_{n+1}-\mathbf{r }_{j}) \Vert =\Vert \mathbf{r }_{n+1}-\mathbf{r }_{j}\Vert . \end{aligned}$$
(4.5)

for all \(j=1,\ldots ,n,\). Now, under the hypothesis that the center of masses stay put at the origin, we have the condition

$$\begin{aligned} m\sum _{j=1}^{n}\mathbf{r }_{j}(t)+M\mathbf{r }_{n+1}(t)=\mathbf{0 }_{{\mathbb {R}}^{3}}, \quad \forall t\in {\mathbb {R}}, \end{aligned}$$

in consequence, if \(\displaystyle {\mathbf{r }_{n+1}(t)=(x_{n+1}(t),y_{n+1}(t),f(t))}\) the previous equation implies

$$\begin{aligned} x_{n+1}(t)=y_{n+1}(t)=0 \quad \text {and} \quad z_{1}(t)=-\frac{M}{nm}f(t), \quad \forall t\in {\mathbb {R}}. \end{aligned}$$

since \(\displaystyle {\sum ^{n}_{j=1}c_{j-1}=\sum ^{n}_{j=1}s_{j-1}=0}\) it follows that:

In consequence,

$$\begin{aligned} \Vert \mathbf{r }_{n+1}-\mathbf{r }_{j}\Vert ^{3}=\Vert \mathbf{r }_{n+1}-\mathbf{r }_{1}\Vert ^{3}=\left[ r^{2}+\gamma ^2f^2\right] ^{3/2}, \end{aligned}$$

with \(\displaystyle {\gamma =\frac{M+nm}{nm}}\) and for all \(j=1,\ldots n.\) To sum up, the previous computations show that

$$\begin{aligned} \dfrac{({\mathcal {R}}^{k}-I_{3})\mathbf{r }_{1}}{\Vert ({\mathcal {R}}^{k}-I_{3})\mathbf{r }_{1}\Vert ^{3}}=\begin{pmatrix} (c_{k+\theta }-c_{\theta })/8 s^{3}_{k/2}r^{2} \\ (s_{k+\theta }-s_{\theta })/8 s^{3}_{k/2}r^{2} \\ 0 \end{pmatrix}, \quad \dfrac{{\mathcal {R}}^{N-j}\mathbf{r }_{n+1}-\mathbf{r }_{1}}{\Vert {\mathcal {R}}^{j-1}\mathbf{r }_{n+1}-\mathbf{r }_{1}\Vert ^{3}}=\begin{pmatrix} -rc_{\theta }/\left[ r^{2}+\gamma ^2f^2\right] ^{3/2}\\ -rs_{\theta }/\left[ r^{2}+\gamma ^2f^2\right] ^{3/2}\\ \gamma f/\left[ r^{2}+\gamma ^2f^2\right] ^{3/2} \end{pmatrix}. \end{aligned}$$

Finally, (4.4) in cylindric coordinates is given by

$$\begin{aligned} \begin{aligned} (\ddot{r}-r({\dot{\theta }})^{2})c_{\theta }-2(2{\dot{r}}{\dot{\theta }}+r\ddot{\theta })s_{\theta }&=m \sum _{k=1}^{n-1}\frac{c_{k+\theta }-c_{\theta }}{8 r^{2}s^{3}_{k/2}}-\frac{M r c_{\theta }}{\left[ r^{2}+\gamma ^2 f^2\right] ^{3/2}},\\ (\ddot{r}-r({\dot{\theta }})^{2})s_{\theta }-2(2{\dot{r}}{\dot{\theta }}-r\ddot{\theta })c_{\theta }&=m\sum _{k=1}^{n-1}\frac{s_{k+\theta }-s_{\theta }}{8 r^{2}s^{3}_{k/2}}-\frac{M rs_{\theta }}{\left[ r^{2}+\gamma ^2f^2\right] ^{3/2}},\\ -M \ddot{f}/n m&=M \gamma f/\left[ r^{2}+\gamma ^2f^2\right] ^{3/2}. \end{aligned} \end{aligned}$$
(4.6)

From the fact

$$\begin{aligned} \frac{c_{k+\theta }-c_{\theta }}{s^{3}_{k/2}}=-2\Big (\frac{1}{s_{k/2}}c_{\theta }+\frac{c_{k/2}}{s^{2}_{k/2}}s_{\theta }\Big ), \end{aligned}$$

it follows directly

$$\begin{aligned} m\sum _{k=1}^{n-1}\frac{c_{k+\theta }-c_{\theta }}{8 r^{2}s^{3}_{k/2}}=-\frac{m}{4r^{2}}\sum _{k=1}^{n-1}\frac{1}{s_{k/2}}c_{\theta }. \end{aligned}$$

Analogously,

$$\begin{aligned} m\sum _{k=1}^{n-1}\frac{s_{k+\theta }-s_{\theta }}{8 r^{2}s^{3}_{k/2}}=-\frac{m}{4r^{2}}\sum _{k=1}^{n-1}\frac{1}{s_{k/2}}s_{\theta }. \end{aligned}$$

Therefore, (4.6) is equivalent to the system of equations

$$\begin{aligned} \begin{aligned} \ddot{f}&=-\frac{(M+nm)f}{h^{3}}, \\ \ddot{r}&=r{\dot{\theta }}^{2}-\frac{m \lambda _n}{r^{2}}-\frac{M r }{h^{3}},\\ {\dot{\theta }}r^2&=C \end{aligned} \end{aligned}$$
(4.7)

with

$$\begin{aligned} \lambda _n=\frac{1}{4}\sum _{k=1}^{n-1}\frac{1}{s_{k/2}}, \qquad h=\left[ r^{2}+\Big (\frac{M+nm}{nm}\Big )^2 f^2\right] ^{1/2}, \end{aligned}$$

and C the constant angular momentum, implying

$$\begin{aligned} \theta (t)=\theta _{0}+\int _{0}^{t}\frac{C}{r^{2}(s)}\mathrm{d}s. \end{aligned}$$

The initial conditions

$$\begin{aligned} f(0)=0, \quad {\dot{f}}(0)=b, \quad r(0)=r_{0}, \quad {\dot{r}}(0)=0, \quad \theta (0)=0, \quad {\dot{\theta }}(0)=\frac{a}{r_{0}}, \end{aligned}$$

we obtain \(C=r_{0}a\), and this completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perdomo, O., Rivera, A. & Suárez, J. Bifurcation of periodic orbits for the N-body problem, from a nongeometrical family of solutions. Celest Mech Dyn Astr 134, 8 (2022). https://doi.org/10.1007/s10569-022-10062-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-022-10062-y

Keywords

Mathematics Subject Classification

Navigation