Skip to main content
Log in

Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The control and optimization of the catalytic properties of nonexpensive early transition metals is an important issue in the chemical industry. Density functional theory was employed to study the relative stability and chemical activities of molybdenum carbides, nitrides and phosphides. The results show that molybdenum phosphides display the highest reactivity toward CO and sulfur adsorption as compared to molybdenum carbides and nitrides. Considering the better catalysts, those that combine high stability and a reasonable chemical activity, we observe that the catalytic potential of these systems should increase following the sequence: Mo<MoC≈MoN<MoP. An electronic analysis is included to understand the better performance of molybdenum phosphide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rodriguez, J. Dvorak and T. Jirsak, J. Phys. Chem. B104 (2000) 11515.

    Google Scholar 

  2. S. T. Oyama, Catal. Today 15 (1992) 179.

    Google Scholar 

  3. D. J. Sajkowski and S. T. Oyama, Appl. Catal. A: Gen. 134 (1996) 339.

    Google Scholar 

  4. M. Nagai, Y. Goto, H. Ishii and S. Omi, Appl. Catal. A: Gen. 192 (2000) 189.

    Google Scholar 

  5. E. B. Yeh, L. H. Schwartz and J. B. Butt, J. Catal. 91 (1985) 241.

    Google Scholar 

  6. R. Kijima and K. Aika, Appl. Catal. A: Gen. 219 (2001) 141.

    Google Scholar 

  7. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley-Interscience, New York, 1994).

    Google Scholar 

  8. H. Topsøe, B. S. Clausen and F. Massoth, Catalysis Science and technology in Hydrotreating catalysis (Springer, Berlin, 1996).

    Google Scholar 

  9. J. A. Rodriguez, J. Kim, J. C. Hansen, S. J. Sawhill and M. E. Bussell, J. Phys. Chem. B 107 (2003), 6276.

    Google Scholar 

  10. S. T. Oyama, P. Clark, V. L. S. Teixeira da Silva, E. J. Lede and F. G. Requejo, J. Phys. Chem. B105 (2001) 4961.

    Google Scholar 

  11. P. Clark and S. T. Oyama, J. Catal. 218 (2003) 78.

    Google Scholar 

  12. P. Clark, X. Wang, P. Deck and S. T. Oyama, J. Catal. 210 (2002) 116.

    Google Scholar 

  13. D. C. Phillips, S. J. Sawhill, R. Self and M. E. Bussell, J. Catal. 207 (2002) 266.

    Google Scholar 

  14. S. T. Oyama, J. Catal. 216 (2003) 343.

    Google Scholar 

  15. P. Liu and J. A. Rodriguez, J. Phys. Chem. B (2003), submitted.

  16. P. Liu, J. A. Rodriguez and J. T. Muckerman, J. Am. Chem. Soc. (2003), submitted.

  17. J. G. Chen, Chem. Rev. 96 (1996) 1477and reference therein.

    Google Scholar 

  18. J. G. Chen, J. Eng and S. P. Kelty, Catal. Today 43 (1998) 147.

    Google Scholar 

  19. R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Structures (VCH, New York, 1988)

    Google Scholar 

  20. G. Frapper, M. Pelissier and J. Hafner, J. Phys. Chem. B104 (2000) 11972.

    Google Scholar 

  21. E. Furimsky, Appl. Catal. A: Gen. 240 (2003) 1and references therein.

    Google Scholar 

  22. B. Winkler, K. Knorr, M. Hytha, V. Milman, V. Soto and M. Avalos, J. Phys. Chem. Solids 64 (2003) 405.

    Google Scholar 

  23. J. Greeley, J. K. Nørskov and M. Mavrikakis, Annu. Rev. Phys. Chem. 53 (2002) 319.

    Google Scholar 

  24. T. P. St. Clair, S. T. Oyama and D. F. Cox, Surf. Sci. 511 (2002) 294.

    Google Scholar 

  25. B. Delley, J. Chem. Phys. 92 (1990) 508.

    Google Scholar 

  26. B. Delley, J. Chem. Phys. 113 (2000) 7756.

    Google Scholar 

  27. J. A. Rodriguez, P. Liu, J. Dvorak, T. Jirsak, J. Gomes, Y. Takahashi and K. Nakamura, Surf. Sci. 543 (2003) L675.

    Google Scholar 

  28. P. Liu and J. A. Rodriguez, J. Chem. Phys. (2003), in press.

  29. P. Liu, J. A. Rodriguez, H. Hou and J. T. Muckerman, J. Chem. Phys. 118 (2003) 7737.

    Google Scholar 

  30. B. Hammer, L. B. Hansen and J. K. Nørskov, Phys. Rev. B59 (1999) 7413.

    Google Scholar 

  31. K. E. Lewis, S. M. Golden and G. P. Smith, J. Am. Chem. Soc. 106 (1984) 3095.

    Google Scholar 

  32. P. Liu, J. A. Rodriguez, J. T. Muckerman and J. Hrbek, Phys. Rev. B67 (2003) 155416.

    Google Scholar 

  33. B. Hammer and J. K. Nørskov, Adv. Catal. 45 (2000) 71.

    Google Scholar 

  34. P. J. Feibelman, B. Hammer, J. K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe and J. Dumesic, J. Phys. Chem. B105 (2001) 4018.

    Google Scholar 

  35. H. Nowotny, E. Parthe, R. Kiefferand F. Benesovsky, Monatshefte fuer Chem. 85 (1954) 255.

    Google Scholar 

  36. A. Bezinge, K. Yvon, J. Muller, W. Lengauer and P. Ettmayer, Solid State Commun. 63 (1987) 141.

    Google Scholar 

  37. S. Harris and R. R. Chianelli, J. Catal. 202 (2001) 187.

    Google Scholar 

  38. http://www.webelements.com/

  39. J. A. Dean, Lange's Handbook of Chemistry (McGraw-Hill Inc., 1979).

  40. T. E. Felter and P. J. Estrup, Surf. Sci. 76 (1978) 464.

    Google Scholar 

  41. E. I. Ko and R. J. Madix, Surf. Sci. 100 (1980) L505.

    Google Scholar 

  42. A. J. Jaworowski, M. Smedh, M. Borg, A. Sandell, A. Beulter, S. L. Sorensen, E. Lundgren and N. J. Anderson, Surf. Sci. 492 (2001) 185.

    Google Scholar 

  43. J. W. He, W. K. Kuhn and D. W. Goodman, Surf. Sci. 262 (1992) 351.

    Google Scholar 

  44. J. K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl and C. J. H. Jacobsen, J. Catal. 209 (2002) 275.

    Google Scholar 

  45. B. Hammer and J. K. Nørskov, Chemisorption and Reactivity on Supported Clusters and Thin Films (Kluwer Academic Publishes, Netherland, 1997).

    Google Scholar 

  46. P. Sabatier, Ber. Dtsch. Chem. Ges. 44 (1911) 2001.

    Google Scholar 

  47. M. Boudart and G. Djega-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions (Princeton University Press, New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Rodriguez, J.A. Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study. Catalysis Letters 91, 247–252 (2003). https://doi.org/10.1023/B:CATL.0000007163.01772.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000007163.01772.19

Navigation