Skip to main content
Log in

Theoretical Study of the Acetonitrile Flip-Flop with the Electric Field Orientation: Adsorption on a Pt(111) Electrode Surface

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The interaction of acetonitrile on Pt(111) electrode has been studied using density functional theory methods. Periodic calculations for a coverage of 0.25 show that the most stable adsorption mode of acetonitrile in UHV conditions on Pt(111) is the side-on η2(C,N) state. In this state, the short-bridge surface site is energetically preferred to the long-bridge site. The nitrogen end-on on top of a surface platinum atom is also likely to occur. An external uniform electric field introduced in the cluster models perpendicular to the surface serves to mimic the electrode potential. It makes the adsorbed molecule move and orient perpendicular to the surface. Depending on the direction of the electric field, the acetonitrile is oriented with the nitrogen atom or the methyl group toward the surface. Our results are in agreement with recent SFG experiments performed in electrochemical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Hemminger, E. L. Muetterties and G. A. Somarjai, J. Am. Chem. Soc. 101 (1979) 62.

    Google Scholar 

  2. C. M. Friend, E. L. Muetterties and J. Stein, J. Am. Chem. Soc. 103 (1981) 767.

    Google Scholar 

  3. C. M. Friend, E. L. Muetterties and J. L. Gland, J. Phys. Chem. 85 (1981) 3256.

    Google Scholar 

  4. B. N. Storhoff and H. C. Lewis, Coord. Chem. Rev. 23 (1977) 1.

    Google Scholar 

  5. W. J. Bland, P. D. W. Kemmitt and R. D. Moore, J. Chem. Soc., Dalton Trans. (1973) 1292.

  6. M. A. Andrews and H. D. Kaesz, J. Am. Chem. Soc. 101 (1979) 7255.

    Google Scholar 

  7. C. Minot and A. Markovits, J. Mol. Struct. Theochem. 424 (1998) 119.

    Google Scholar 

  8. A. Markovits, M. Garcia-Hernandez, J. M. Ricart and F. Illas, J. Phys. Chem. B 103 (1999).

  9. B. A. Sexton and N. R. Avery, Surf. Sci. 129 (1983) 21.

    Google Scholar 

  10. E. C. Ou, P. A. Young and P. R. Norton, Surf. Sci. 277 (1992) 123.

    Google Scholar 

  11. J. P. Billon, J. Electroanal. Chem. (1960) 487.

  12. B. E. Conway, H. Angerstein-Kozlowska, B. MacDougall and B. V. Tilak, in Proc. 2nd International Conference on Fuel Cells, 1968, S.E.R.A.I., 1969.

  13. B. E. Conway, N. Marincic, D. Gilroy and E. J. Rudd, J. Electroanal. Chem. 113 (1966) 1144.

    Google Scholar 

  14. S. Morin and B. E. Conway, J. Electroanal. Chem. 376 (1994) 135.

    Google Scholar 

  15. H. Angerstein-Kozlowska, B. Macdougall and B. E. Conway, J. Electroanal. Chem. 39 (1972) 287.

    Google Scholar 

  16. I. Villegas and M. J. Weaver, J. Am. Chem. Soc. 118 (1996) 458.

    Google Scholar 

  17. N. S. Marinkovic, M. Hecht, J. S. Loring and W. R. Fawcet, Electrochim. Acta. 41 (1996) 641.

    Google Scholar 

  18. S. Baldelli, G. Mailhot, P. Ross, Y.-R. Shen and G. A. Somorjai, J. Phys. Chem. B105 (2001) 654.

    Google Scholar 

  19. G. Kresse and J. Hafner, Phys. Rev. B47 (1993) 558.

    Google Scholar 

  20. G. Kresse and J. Hafner, Phys. Rev. B49 (1994) 14251.

    Google Scholar 

  21. J. P. Perdew and Y. Wang, Phys. Rev. B 45 (1992).

  22. G. Kresse and J. Hafner, J. Phys. Condens. Matter (1994).

  23. D. Vanderbilt, Phys. Rev. B41 (1990) 7892.

    Google Scholar 

  24. A. Valcarcel, J. Ricart, A. Clotet, A. Markovits, C. Minot and F. Illas, Surf. Sci. 519 (2002) 250.

    Google Scholar 

  25. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.

    Google Scholar 

  26. A. Ricca and C. W. Bauschlicher, J. Phys. Chem. 98 (1994) 12899.

    Google Scholar 

  27. T. V. Russo, R. L. Martin and P. J. Hay, 102 (1995) 8023.

  28. P. E. M. Siegbahn and R. H. Crabtree, J. Am. Chem. Soc. 119 (1997) 3103.

    Google Scholar 

  29. M. J. Frisch et al., Gaussian'98, Revision A6, Pittsburgh, PA, 1998.

  30. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82 (1985) 299.

    Google Scholar 

  31. S. Zurita, J. Rubio, F. Illas and J. C. Barthelat, J. Chem. Phys. 104 (1996) 8500.

    Google Scholar 

  32. J. Rubio, S. Zurita, J. C. Barthelat and F. Illas, Chem. Phys. Lett. 217 (1994) 283.

    Google Scholar 

  33. G. Pacchioni and P. S. Bagus, Phys. Rev. B40 (1989) 6003.

    Google Scholar 

  34. J. O. M. Bockris and A. K. N. Reddy, Modern electrochemistry, Vol.2 (Plenum, New York, 1973).

    Google Scholar 

  35. A. Valcarcel, J. M. Ricart, A. Clotet, A. Markovits, C. Minot and F. Illas, J. Chem. Phys. 116 (2002) 1165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Minot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovits, A., Minot, C. Theoretical Study of the Acetonitrile Flip-Flop with the Electric Field Orientation: Adsorption on a Pt(111) Electrode Surface. Catalysis Letters 91, 225–234 (2003). https://doi.org/10.1023/B:CATL.0000007159.44698.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000007159.44698.6c

Navigation