Skip to main content
Log in

Oxidative Dehydrogenation of Ethylbenzene over Cu1-x Co x Fe2O4 Catalyst System: Influence of Acid–Base Property

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Cu–Co ferrites with the general formula Cu1-x Co x Fe2O4 (x = 0, 0.25, 0.50, 0.75 and 1.0) was prepared by a low-temperature hydroxide coprecipitation route. The catalyst systems were characterized by adopting various physicochemical techniques. The acid–base properties were studied in detail, and the catalytic activity as well as the selectivity for oxidative dehydrogenation of ethylbenzene was compared for various compositions. FTIR adsorption of pyridine is carried out to understand the relative acidity of various compositions of the systems. IR studies of spinel surface with adsorbed CO2 and adsorption studies of electron acceptors such as 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrachloro-1-4-benzoquinone and p-dinitrobenzene are carried out to evaluate the nature of basic sites and the strength and distribution of electron donor sites present on the spinel surface. It is found that acidity (basicity) of the Cu1-x Co x Fe2O4 spinel system increases (decreases) from x = 0 to 1. A good correlation was found between the activity for this reaction and the surface acid–base properties of the catalysts. Intermediate compositions show better catalytic performance, among which x = 0.50 is superior and demonstrates an intermediate acid–base character. It was observed that dehydrogenation of ethylbenzene to styrene proceeds mainly on an acid–base pair site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Lee, Catal. Rev. 8 (1973) 285.

    Google Scholar 

  2. B. Delmon, P. A. Jacobs and G. Poncelet, Preparation of Catalysts II (Elsevier, Amsterdam, 1979) pp. 293-305.

    Google Scholar 

  3. D. E. Stobbe, F. R. Van Buren, M. S. Hoogenraad, A. J. Van Dillen and J. W. Geus, J. Chem. Soc., Faraday Trans. 87 (1991) 1639.

    Google Scholar 

  4. F. J. O'Hara, U.S. Patent 3,904,552 (1975).

  5. T. Hirano, Appl. Catal. 28 (1986) 119.

    Google Scholar 

  6. J-H. Wu, C-S. Chwg and I. Wang, Appl. Catal. 18 (1985) 295.

    Google Scholar 

  7. I. Wang, W-F. Chang, R-J. Shiau, J-C. Wu and C-S. Chung, J. Catal. 83 (1983) 438.

    Google Scholar 

  8. I. Wang, J-C. Wu and C-S. Chung, Appl. Catal. 16 (1985) 89.

    Google Scholar 

  9. H. H. Kung and M. C. Kung, J. Phys. Chem. 84 (1980) 383.

    Google Scholar 

  10. W. L. Kehl and R. J. Rennard, U.S. Patent 3,450,787 (1969).

    Google Scholar 

  11. R. J. Rennard and W. L. Kehl, J. Catal. 21 (1971) 282.

    Google Scholar 

  12. S. Velu, K. Suzuki, M. Okazaki, M. P. Kapoor, T. Osaki and F. Ohashi, J. Catal. 194 (2000) 373.

    Google Scholar 

  13. E. J. W. Verwey and E. L. Herlman, J. Chem. Phys. 15 (1947) 174.

    Google Scholar 

  14. K. Balasubramanian and V. Krishnasamy, Indian J. Chem. 21A (1982) 813.

    Google Scholar 

  15. W. S. Chen, M. D. Lee and J. F. Lee, Appl. Catal. 83 (1992) 201.

    Google Scholar 

  16. C. S. Narasimhan and C. S. Swamy, Appl. Catal. 2 (1982) 315.

    Google Scholar 

  17. M. John Jebarathinam, M. Eswaramoorthy and V. Krishnasamy, Appl. Catal. A: Gen. 145 (1996) 57.

    Google Scholar 

  18. K. Sreekumar, M. Thomas, T. M. Jyothi, M. D. Biju, S. Suganan and B. S. Rao, Polish J. Chem. 74 (2000) 509.

    Google Scholar 

  19. T. Mathew, N. R. Shiju, B. B. Tope, S. G. Hegde, B. S. Rao and C. S. Gopinath, Phys. Chem. Chem. Phys. 4 (2002) 4260.

    Google Scholar 

  20. E. Prince and R. G. Treuting, Acta. Crystallogr. 9 (1956) 1025.

    Google Scholar 

  21. J. Smith and H. P. J. Wijn, Adv. Electron. Electronphys. 6 (1954) 83.

    Google Scholar 

  22. G. H. Jonker, J. Phys. Chem. Solids 9 (1959) 165.

    Google Scholar 

  23. N. F. M. Henry, J. Lipson and W. A. Wooster, The Interpretation of X-Ray Diffraction Photographs (Macmillan and Co Ltd., London, 1951).

    Google Scholar 

  24. P. Tarte, Spectrochim. Acta. 19 (1965) 49.

    Google Scholar 

  25. J. Preudhomma and P. Tarte, Spectrochim. Acta, Part A27 (1971) 961.

    Google Scholar 

  26. R. D. Waldron, Phys. Rev. 99 (1955) 1727.

    Google Scholar 

  27. W. B. White and B. A. De Angelis, Spectrochim Acta, Part A23 (1967) 985.

    Google Scholar 

  28. K. Lazar, T. Mathew, Z. Koppany, J. Megyeri, V. Samuel, S. P. Mirajkar, B. S. Rao, and L. Guczi, Phys. Chem. Chem. Phys. 4 (2002) 3530.

    Google Scholar 

  29. T. Mathew, N. R. Shiju, K. Sreekumar, B. S. Rao and C. S. Gopinath, J. Catal. 210 (2002) 405.

    Google Scholar 

  30. J. P. Jacobs, A. Maltha, J. R. H. Reintjes, T. Drimal, V. Ponec and H. H. Brogersma, J. Catal. 147 (1994) 294.

    Google Scholar 

  31. R. Philipp and K. Fujimoto, J. Phys. Chem. 96 (1992) 9035.

    Google Scholar 

  32. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed. (Wiley, New York, 1978) p. 243.

    Google Scholar 

  33. C. Morterra, G. Ghiotti, F. Boccuzzi and S. Coluccia, J. Catal. 51 (1978) 299.

    Google Scholar 

  34. A. Krause, Sci. Pharm. 38 (1970) 266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.V. Bokade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, T., Malwadkar, S., Pai, S. et al. Oxidative Dehydrogenation of Ethylbenzene over Cu1-x Co x Fe2O4 Catalyst System: Influence of Acid–Base Property. Catalysis Letters 91, 217–224 (2003). https://doi.org/10.1023/B:CATL.0000007158.88722.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000007158.88722.5e

Navigation