Skip to main content
Log in

Asymmetric Cryptographic Algorithms

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The concept of asymmetric cryptographic algorithms introduced by W. Diffie and M. Hellman in 1976 is considered. The problems of factorization of large integers and finding discrete logarithms for elements of finite large-order groups are presented. It is proved that asymmetric cryptographic algorithms based on the problem of finding a discrete logarithm for points of an elliptic curve over a finite field should be used in modern information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Trans. Inform. Theory, 22, 644-654 (1976).

    Google Scholar 

  2. T. Elgamal, “A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans. Inform. Theory, 31, 469-472 (1985).

    Google Scholar 

  3. C. P. Schnorr, “Efficient identification and signatures for smart cards”, in: Advances in Cryptology, Crypto'89, Lect. Notes Comp. Sci., 435, Springer-Verlag, Berlin (1990), pp. 239-252.

    Google Scholar 

  4. K. Nyberg and R. Rueppel, “A new signature scheme based on the DSA giving message recovery”, in: Trans. 1st ACM Conf. Computer and Comm. Security, S. l, ACM Press (1993), pp. 56-61.

  5. R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems”, Comm. ACM, 21, 120-126 (1978).

    Google Scholar 

  6. S. Lehman, “Factoring large integers”, Math. Comp., 28, 637-646 (1974).

    Google Scholar 

  7. A.K. Lenstra and H.W. Lenstra, The Development of the Number Field Sieve, Springer-Verlag, Berlin (1993).

    Google Scholar 

  8. D.M. Gordon, “Discrete logarithms in GF (p) using the number field sieve”, SIAM J. Comput., 6, 124-138 (1993).

    Google Scholar 

  9. D. Coppersmit, “Fast evaluation of logarithms in finite fields of characteristic 2”, IEEE Trans. Inform. Theory, 30, 587-594 (1984).

    Google Scholar 

  10. R. Schoof, “Elliptic curves over finite fields and the computation of square roots mod p”, Math. Comput., 44, 483-494 (1985).

    Google Scholar 

  11. V.S. Miller, “Use of elliptic curves in cryptography”, in: Advances in Cryptology, Crypto'85; Lect. Notes Comput. Sci., Springer-Verlag, Berlin, 218 (1986), pp. 417-426.

    Google Scholar 

  12. N. Koblitz, “Miracles of the height function — a golden shield protecting ECC”, Workshop on Elliptic Curve Cryptography ECC-2000 (Essen), Essen (Germany) (2000).

    Google Scholar 

  13. J. Silverman and J. Suzuki, “Elliptic curve discrete logarithms and the index calculus”, in: Advances in Cryptology, Asiacrypt 98; Lect. Notes Comp. Sci., Springer-Verlag, Berlin, 1514 (1998), pp. 110-125.

    Google Scholar 

  14. J. Silverman, “The xedni-calculus and the elliptic curve discrete logarithm problem”, Providence (RI), (Prepr. / Dep. Math. Brown Univ.) (1998).

    Google Scholar 

  15. M. Jacobson, N. Koblitz, J. Silverman et al., “Analysis of the xedni-calculus attack”, Providence (RI), (Prepr. / Dep. Math. Brown Univ.) (1998).

    Google Scholar 

  16. A. Menezes, T. Okamoto, and S. Vanstone, “Reducing elliptic curve logarithms to a finite field”, IEEE Trans. Inform. Theory, 39, 1639-1646 (1993).

    Google Scholar 

  17. P. Gaudry, F. Hess, and N. Smart, “Constructive and destructive facets of Weil descent on elliptic curves”, Prepr. http://ultralix.polytechnique.fr (2000).

  18. N. Koblitz, “Elliptic curve cryptosystems”, Math. Comput., 48, 203-209 (1987).

    Google Scholar 

  19. V. F. Sinyavskii, “Cryptography systems based on elliptic curves”, in: Proc. Conf. Odessa-1977, Odessa, UNIIRT (1997), pp. 37-40.

    Google Scholar 

  20. A. I. Kochubinskii, “Elliptic curves in cryptography”, Safety of Information, 2, 18-31 (2000).

    Google Scholar 

  21. A. I. Kochubinskii, “Principles of construction of the project of state standard of a digital signature”, Safety of Information, 1, 20-25 (2001).

    Google Scholar 

  22. A. I. Kochubinskii, “Perspectives of application of hyperelliptic curves in cryptography”, in: Information Safety in Information-Telecommunication Systems, 5th Intern. Sci.-Pract. Conf., Interlink, Kiev (2002).

  23. V. Zadiraka and O. Oleksik, “Computer arithmetic of multidigit numbers”, Nauk. Vydannya, Kiev (2003).

    Google Scholar 

  24. L. A. Zavadskaya and A. M. Fal', “Cryptographically strong generators of pseudorandom sequences”, Safety of Information, 1, 7-11 (1997).

    Google Scholar 

  25. S. V. Kapustin and A. M. Fal', “Technology of using asymmetric algorithms”, Corporate Systems, 4, 62-65 (1999).

    Google Scholar 

  26. Directive 1999/03/EC of the European Parliament and of the Council on a Community framework of electronic signatures.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, I.N., Kochubinskii, A.I. Asymmetric Cryptographic Algorithms. Cybernetics and Systems Analysis 39, 549–554 (2003). https://doi.org/10.1023/B:CASA.0000003504.91987.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CASA.0000003504.91987.d9

Navigation