Skip to main content

Commutativity, Associativity, and Public Key Cryptography

  • Conference paper
  • First Online:
Number-Theoretic Methods in Cryptology (NuTMiC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10737))

Included in the following conference series:

  • 581 Accesses

Abstract

In this paper, we will study some possible generalizations of the famous Diffie-Hellman algorithm. As we will see, at the end, most of these generalizations will not be secure or will be equivalent to some classical schemes. However, these results are not always obvious and moreover our analysis will present some interesting connections between the concepts of commutativity, associativity, and public key cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barsotti, I.: Un Teorema di structura per le variettà di gruppali. Rend. Acc. Naz. Lincei 18, 43–50 (1955)

    MathSciNet  MATH  Google Scholar 

  2. Bergamo, P., D’Arco, P., de Santis, A., Kocarev, L.: Security of Public Key Cryptosystems based on Chebyshev Polynomials. arXiv:cs/0411030v1, 1 February 2008

  3. Block, H.D., Thielman, H.P.: Commutative Polynomials. Quart. J. Math. Oxford Ser. 2(2), 241–243 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  4. Couveignes, J.M.: Hard Homogeneous Spaces. Cryptology ePrint archive: 2006/291: Listing for 2006

    Google Scholar 

  5. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor. 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frey17: Deep Theory, efficient algorithms and surprising applications. In: NuTMiC (2017)

    Google Scholar 

  7. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines. Finite Fields Appl. 15(2), 246–260 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hunziker, M., Machiavelo, A., Parl, J.: Chebyshev polynomials over finite fields and reversibility of \(\sigma \)-automata on square grids. Theor. Comput. Sci. 320(2–3), 465–483 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  Google Scholar 

  10. Kocarev, L., Makraduli, J., Amato, P.: Public key encryption based on Chebyshev polynomials. Circ. Syst. Sign. Process. 24(5), 497–517 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Z., Cui, Y., Jin, Y., Xu, H.: Parameter selection in public key cryptosystem based on Chebyshev polynomials over finite field. J. Commun. 6(5), 400–408 (2011)

    Article  Google Scholar 

  12. Lima, J.B., Panario, D., Campello de Sousa, R.M.: Public-key cryptography based on Chebyshev polynomials over \(G(q)\). Inf. Process. Lett. 111, 51–56 (2010)

    Article  MATH  Google Scholar 

  13. Maze, G.: Algebraic Methods for Constructing One-Way Trapdoor Functions. Ph.D. thesis - University oof Notre Dame (2003). http://user.math.uzh.ch/maze/

  14. Rosen, J., Scherr, Z., Weiss, B., Zieve, M.: Chebyshev mappings over finite fields. Amer. Math. Monthly 119, 151–155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun, J., Zhao, G., Li, X.: An improved public key encryption algorithm based on Chebyshev polynomials. TELKOMNIKA 11(2), 864–870 (2013)

    Google Scholar 

Download references

Acknowledgment

The authors want to thank Jérôme Plût, Gerhard Frey and Gérard Maze for very useful comments and particularly Gerhard Frey for his help to improve the presentation of this paper. We have met Gerhard Frey and Gérard Maze at NuTMiC 2017 in Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Nachef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patarin, J., Nachef, V. (2018). Commutativity, Associativity, and Public Key Cryptography. In: Kaczorowski, J., Pieprzyk, J., Pomykała, J. (eds) Number-Theoretic Methods in Cryptology. NuTMiC 2017. Lecture Notes in Computer Science(), vol 10737. Springer, Cham. https://doi.org/10.1007/978-3-319-76620-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76620-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76619-5

  • Online ISBN: 978-3-319-76620-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics