Skip to main content
Log in

Selective Block of Sarcolemmal IKATP in Human Cardiomyocytes Using HMR 1098

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose: Activation of the myocardial, ATP-dependent potassium current (IKATP) during ischemia causes shortening of the action potential duration thereby increasing dispersion of repolarization between ischemic and non-ischemic myocardium and predisposing to reentrant arrhythmias. The IKATP inhibitor HMR1098 allows selective block of the sarcolemmal myocardial KATP-channel in various animal species. Therefore, we studied the concentration and pH-dependence of HMR1098 in human ventricular myocytes.

Methods: Human ventricular cardiomyocytes were isolated enzymatically. IKATP was measured with the patch-clamp technique in whole cell configuration at 35°C. Action potentials were recorded using Amphotericine B in perforated patch conditions. In voltage clamp experiments, the KATP-channel was activated by application of 1μM rilmakalim, a KATP-channel opener. In action potential recordings, 0.1 μM rilmakalim was used.

Results: At physiological pH (pH = 7.3) half-maximal block of the rilmakalim-induced current occurred at 0.42 ± 0.008 μM HMR1098 (at 0 mV membrane potential); under acidic conditions as can be expected to be present under ischemic conditions (pH = 6.5), half-maximal block was achieved at markedly lower concentrations (IC50 = 0.24 ± 0.009 μM). In current clamp experiments, block of IKATP by HMR1098 was capable of reversing the action potential shortening induced by rilmakalim, and restored the action potential plateau.

Conclusions: HMR1098 appears to be useful to prevent IKATP-induced shortening of the action potential in human ventricular myocardium. More acidic conditions, as observed in ischemia, increase the sensitivity to HMR1098, indicating a more potent effect in ischemic myocardium. Thus, HMR1098 may be a useful agent to prevent action potential shortening and dispersion of repolarization during ischemia, which may protect against ischemia induced ventricular arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trube G, Hescheler J. Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflugers Arch 1984; 401(2): 178-184.

    Google Scholar 

  2. Noma A.ATP-regulatedK+channels in cardiac muscle. Nature 1983; 305(5930): 147-148.

    Google Scholar 

  3. Flagg TP, Nichols CG. Sarcolemmal K(ATP) channels in the heart: molecular mechanisms brought to light, but physiologic consequences still in the dark. J Cardiovasc Electrophysiol 2001; 12(10): 1195-1198.

    Google Scholar 

  4. Vleugels A, Vereecke J, Carmeliet E. Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circ Res 1980; 47(4): 501-508.

    Google Scholar 

  5. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 1989; 69(4): 1049-1169.

    Google Scholar 

  6. Wilde AA, Escande D, Schumacher CA, et al. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel. Circ Res 1990; 67(4): 835-843.

    Google Scholar 

  7. Lukas A, Antzelevitch C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation 1993; 88(6): 2903-2915.

    Google Scholar 

  8. Coromilas J, Costeas C, Deruyter B, Dillon SM, Peters NS, Wit AL. Effects of pinacidil on electrophysiological properties of epicardial border zone of healing canine infarcts: Possible effects of KATP channel activation. Circulation 2002; 105(19): 2309-2317.

    Google Scholar 

  9. Wolleben CD, Sanguinetti MC, Siegl PK. Influence of ATP-sensitive potassium channel modulators on ischemiainduced fibrillation in isolated rat hearts. J Mol Cell Cardiol 1989; 21(8): 783-788.

    Google Scholar 

  10. Kantor PF, Coetzee WA, Carmeliet EE, Dennis SC, Opie LH. Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulfonylurea. Circ Res 1990; 66(2): 478-485.

    Google Scholar 

  11. Gwilt M, Henderson CG, Orme J, Rourke JD. Effects of drugs on ventricular fibrillation and ischaemic K+ loss in a model of ischaemia in perfused guinea-pig hearts in vitro. Eur J Pharmacol 1992; 220(2/3): 231-236.

    Google Scholar 

  12. Tosaki A, Hellegouarch A. Adenosine triphosphate-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. Heart function studies in nonfibrillating isolated hearts. J AmColl Cardiol 1994; 23(2): 487-496.

    Google Scholar 

  13. Chi L, Black SC, Kuo PI, Fagbemi SO, Lucchesi BR. Actions of pinacidil at a reduced potassium concentration: A direct cardiac effect possibly involving the ATP-dependent potassium channel. J Cardiovasc Pharmacol 1993; 21(2): 179-190.

    Google Scholar 

  14. Bellemin-Baurreau J, Poizot A, Hicks PE, Rochette L, Armstrong JM. Effects ofATP-dependent K+channel modulators on an ischemia-reperfusion rabbit isolated heart model with programmed electrical stimulation. Eur J Pharmacol 1994; 256(2): 115-124.

    Google Scholar 

  15. Billman GE, Avendano CE, Halliwill JR, Burroughs JM. The effects of the ATP-dependent potassium channel antagonist, glyburide, on coronary blood flow and susceptibility to ventricular fibrillation in unanesthetized dogs. J Cardiovasc Pharmacol 1993; 21(2): 197-204.

    Google Scholar 

  16. Cacciapuoti F, Spiezia R, Bianchi U, Lama D, D'Avino M, Varricchio M. Effectiveness of glibenclamide on myocardial ischemic ventricular arrhythmias in non-insulin-dependent diabetes mellitus. Am J Cardiol 1991; 67(9): 843-847.

    Google Scholar 

  17. Lomuscio A, Fiorentini C. Influence of oral antidiabetic treatment on electrocardiac alterations induced by myocardial infarction. Diabetes Res Clin Pract 1996; 31 (Suppl): S21-S26.

    Google Scholar 

  18. Davis TM, Parsons RW, Broadhurst RJ, Hobbs MS, Jamrozik K. Arrhythmias and mortality after myocardial infarction in diabetic patients. Relationship to diabetes treatment. Diabetes Care 1998; 21(4): 637-640.

    Google Scholar 

  19. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990; 247(4948): 1341-1344.

    Google Scholar 

  20. Gogelein H, Hartung J, Englert HC, Scholkens BA. HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part I: effects on cardiomyocytes, coronary flow and pancreatic beta-cells. J Pharmacol Exp Ther 1998; 286(3): 1453-1464.

    Google Scholar 

  21. Liu Y, Ren G, O'Rourke B, Marban E, Seharaseyon J. Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol Pharmacol 2001; 59(2): 225-230.

    Google Scholar 

  22. Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure [see comments]. Circulation 1992; 85(3): 1046-1055.

    Google Scholar 

  23. Rae J, Cooper K, Gates P, Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 1991; 37(1): 15-26.

    Google Scholar 

  24. Terzic A, Jahangir A, Kurachi Y. HOE-234, a second generation K+ channel opener, antagonizes the ATP-dependent gating of cardiac ATP-sensitive K+ channels. J Pharmacol Exp Ther 1994; 268(2): 818-825.

    Google Scholar 

  25. Kocic I, Siluta W. Cardiopharmacological profile of HOE 234, the new activator of ATP-sensitive K+ channels in the guinea pig heart. Pol J Pharmacol 1995; 47(5): 457-460.

    Google Scholar 

  26. Riccioppo NF, Mesquita JO, Olivera GB. Antiarrhythmic and electrophysiological effects of the novel KATP channel opener, rilmakalim, in rabbit cardiac cells. Gen Pharmacol 1997; 29(2): 201-205.

    Google Scholar 

  27. Krause E, Englert H, Gogelein H. Adenosine triphosphatedependent K currents activated by metabolic inhibition in rat ventricular myocytes differ from those elicited by the channel opener rilmakalim. Pflugers Arch 1995; 429(5): 625-635.

    Google Scholar 

  28. Marzouk SA, Buck RP, Dunlap LA, Johnson TA, Cascio WE. Measurement of extracellular pH, K(+), and lactate in ischemic heart. Anal Biochem 2002; 308(1): 52-60.

    Google Scholar 

  29. Sato T, Sasaki N, Seharaseyon J, O'Rourke B, Marban E. Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection. Circulation 2000; 101(20): 2418-2423.

    Google Scholar 

  30. Liu Y, Sato T, O'Rourke B, Marban E. Mitochondrial ATPdependent potassium channels: Novel effectors of cardioprotection? Circulation 1998; 97(24): 2463-2469.

    Google Scholar 

  31. Gogelein H, Hartung J, Englert HC. Molecular basis, pharmacology and physiological role of cardiac K(ATP) channels. Cell Physiol Biochem 1999; 9(4/5): 227-241.

    Google Scholar 

  32. Billman GE, Englert HC, Scholkens BA. HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part II: Effects on susceptibility to ventricular fibrillation induced by myocardial ischemia in conscious dogs. J Pharmacol Exp Ther 1998; 286(3): 1465-1473.

    Google Scholar 

  33. Krismer AC, Wenzel V, Voelckel W, et al. Effect of the cardioselective ATP-sensitive potassium channel inhibitor HMR 1883 in a porcine model of cardiopulmonary resuscitation. Resuscitation 2002; 53(3): 299-306.

    Google Scholar 

  34. Wirth KJ, Rosenstein B, Uhde J, Englert HC, Busch AE, Scholkens BA. ATP-sensitive potassium channel blocker HMR 1883 reduces mortality and ischemia-associated electrocardiographic changes in pigs with coronary occlusion. J Pharmacol Exp Ther 1999; 291(2): 474-481.

    Google Scholar 

  35. Gogelein H, Englert HC, Kotzan A, et al. HMR 1098: An inhibitor of cardiac ATP-sensitive potassium channels. Cardiovascular Drug Review 2000; 18 157-174.

    Google Scholar 

  36. Jung O, Englert HC, Jung W, et al. The K(ATP) channel blocker HMR 1883 does not abolish the benefit of ischemic preconditioning on myocardial infarct mass in anesthetized rabbits. Naunyn Schmiedebergs Arch Pharmacol 2000; 361(4): 445-451.

    Google Scholar 

  37. Manning Fox JE, Kanji HD, French RJ, Light PE. Cardioselectivity of the sulphonylurea HMR 1098: Studies on native and recombinant cardiac and pancreatic K(ATP) channels. Br J Pharmacol 2002; 135(2): 480-488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kääb, S., Zwermann, L., Barth, A. et al. Selective Block of Sarcolemmal IKATP in Human Cardiomyocytes Using HMR 1098. Cardiovasc Drugs Ther 17, 435–441 (2003). https://doi.org/10.1023/B:CARD.0000015858.34009.0c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CARD.0000015858.34009.0c

Navigation