Boundary-Layer Meteorology

, Volume 112, Issue 1, pp 1–31 | Cite as

An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification

  • Mikio Nakanishi
  • Hiroshi Niino


A computational scheme for an improved Mellor–Yamada(M–Y) Level-3 model with condensation physics is proposedand its performance is examined against large-eddy-simulationdata on radiation fog. The improved M–Y model greatlycorrects several shortcomings of the original M–Y model:the underestimations of the mixed-layer depth and themagnitude of turbulent kinetic energy, and the discrepanciesin the formation and dissipation times of the fog. Inaddition the improved M–Y model can reproduce theoccurrence of Kelvin–Helmholtz instability and periodicoscillations due to its energy cycle. It is shown that theoptimization of both the closure constants and the masterlength scale is required for this improvement.

The improved M–Y model has an improvement also in theLevel-2.5 version. Although the performance of theLevel-2.5 version is not so good as that of the Level-3version, the former has the advantage of relatively lowcomputational cost and is popularly used in operationalweather forecasts. Our computational scheme for theimproved M–Y model allows us to switch its hierarchylevels easily according to the purpose.

Countergradient diffusion Kelvin–Helmholtz instability Level-3 model One-dimensional simulation Radiation fog Turbulence closure model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdella, K. and McFarlane, N.: 1997, 'A New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer', J. Atmos. Sci. 54, 1850–1867.Google Scholar
  2. Bechtold, P., Cuijpers, J. W. M., Mascart, P., and Trouilhet, P.: 1995, 'Modeling of Trade Wind Cumuli with a Low-Order Turbulence Model: Toward a Unified Description of Cu and Sc Clouds in Meteorological Models', J. Atmos. Sci. 52, 455–463.Google Scholar
  3. Bougeault, P.: 1981, 'Modeling the Trade-Wind Cumulus Boundary Layer. Part I: Testing the Ensemble Cloud Relations against Numerical Data', J. Atmos. Sci. 38, 2414–2428.Google Scholar
  4. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–189.Google Scholar
  5. Chen, C. and Cotton, W. R.: 1983, 'A One-Dimensional Simulation of the Stratocumulus-Capped Mixed Layer', Boundary-Layer Meteorol. 25, 289–321.Google Scholar
  6. Gibson, M. M. and Launder, B. E.: 1978, 'Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer', J. Fluid Mech. 86, 491–511.Google Scholar
  7. Helfand, H. M. and Labraga, J. C.: 1988, 'Design of a Nonsingular Level 2.5 Second-Order Closure Model for the Prediction of Atmospheric Turbulence', J. Atmos. Sci. 45, 113–132.Google Scholar
  8. Kantha, L. H. and Clayson, C. A.: 1994, 'An Improved Mixed Layer Model for Geophysical Applications', J. Geophys. Res. 99(C12), 25,235–25,266.Google Scholar
  9. Katayama, A.: 1972, A Simplified Scheme for Computing Radiative Transfer in the Troposphere, Numerical Simulation of Weather and Climate, Technical Report No. 6, University of California, Los Angeles, 77 pp.Google Scholar
  10. Lacis, A. A. and Hansen, J. E.: 1974, 'A Parameterization for the Absorption of Solar Radiation in the Earth's Atmosphere', J. Atmos. Sci. 31, 118–133.Google Scholar
  11. Mellor, G. L.: 1977, 'The Gaussian Cloud Model Relations', J. Atmos. Sci. 34, 356–358 and 1483–1484.Google Scholar
  12. Mellor, G. L. and Yamada, T.: 1974, 'A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers', J. Atmos. Sci. 31, 1791–1806.Google Scholar
  13. Mellor, G. L. and Yamada, T.: 1982, 'Development of a Turbulence Closure Model for Geophysical Fluid Problems', Rev. Geophys. Space Phys. 20, 851–875.Google Scholar
  14. Moeng, C.-H. and Sullivan, P. P.: 1994, 'A Comparison of Shear-and Buoyancy-Driven Planetary Boundary Layer Flows', J. Atmos. Sci. 51, 999–1022.Google Scholar
  15. Musson-Genon, L.: 1987, 'Numerical Simulation of a Fog Event with a One-Dimensional Boundary Layer Model', Mon. Wea. Rev. 115, 592–607.Google Scholar
  16. Nakanishi, M.: 2000, 'Large-Eddy Simulation of Radiation Fog', Boundary-Layer Meteorol. 94, 461–493.Google Scholar
  17. Nakanishi, M.: 2001, 'Improvement of the Mellor-Yamada Turbulence Closure Model Based on Large-Eddy Simulation Data', Boundary-Layer Meteorol. 99, 349–378.Google Scholar
  18. Sommeria, G. and Deardorff, J. W.: 1977, 'Subgrid-Scale Condensation in Models of Nonprecipitating Clouds', J. Atmos. Sci. 34, 344–355.Google Scholar
  19. Stephens, G. L.: 1978, 'Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes', J. Atmos. Sci. 35, 2123–2132.Google Scholar
  20. Stephens, G. L., Ackerman, S., and Smith, E. A.: 1984, 'A Shortwave Parameterization Revised to Improve Cloud Absorption', J. Atmos. Sci. 41, 687–690.Google Scholar
  21. Sun, W.-Y. and Ogura, Y.: 1980, 'Modeling the Evolution of the Convective Planetary Boundary Layer', J. Atmos. Sci. 37, 1558–1572.Google Scholar
  22. Therry, G. and LacarrÈre, P.: 1983, 'Improving the Eddy Kinetic Energy Model for Planetary Boundary Layer Description', Boundary-Layer Meteorol. 25, 63–88.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Mikio Nakanishi
  • Hiroshi Niino

There are no affiliations available

Personalised recommendations