Skip to main content
Log in

Glutaric aciduria type I and kynurenine pathway metabolites: A modified hypothesis

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Summary: Glutaric aciduria type I is an inborn error of organic acid metabolism that demonstrates a particular temporal vulnerability (acute encephalopathic episodes in infancy) and a spatial vulnerability (acute striatal necrosis, focused on the putamen). Excitotoxic mechanisms involving 3-hydroxyglutaric acid as the major neurotoxin have been suggested. This paper proposes a role for metabolites of the kynurenine pathway in the pathogenic process and modifies the hypothesis of Heyes. Deficiency of glutaryl-CoA dehydrogenase blocking the glutarate pathway and activation of indoleamine 2,3-dioxygenase in macrophages/monocytes by intercurrent inflammation may increase flux down the kynurenine pathway towards the production of quinolinic acid. Quinolinic acid is neurotoxic and is an endogenous agonist at N-methyl-D-aspartate receptors. Synergistic excitation of these receptors by quinolinic acid and 3-hydroxyglutaric acid, which alone does not have sufficient potency, may be involved in the pathogenesis of striatal necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bender DA (1983)Biochemistry of try tophan in health and disease.Mol Aspects Med 6:101-197.

    Google Scholar 

  • Beninger RJ, Colton AM, Ingles JL, Jhamandas K, Boegman RJ (1994)Picolinic acid blocksthe neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain:evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry. Neuroscience 61:603-612.

    Google Scholar 

  • Bennett JP Jr, Logan WJ, Snyder SH (1973)Amino acids as central nervous transmitters:the influence of ions,amino acid analogues,and ontogeny on trans ort systems for L-glutamicand L-aspartic acids and glycine into central nervous synaptosomes of the rat.J Neurochem 21:1533-1550.

    Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988)Kynurenic acid antagonises res onses to NMDAvia an action at the strychnine-insensitive glycine receptor.Eur J Pharmacol 154: 85-87.

    Google Scholar 

  • Cao H, Pietrak BL, Grubmeyer C (2002)Quinolinate phosphoribosyltransferase:kinetic mechanism for a type II PRTase.Biochemistry 41:3520-3528.

    Google Scholar 

  • Chiarugi A, Meli E, Moroni F (2001)Similarities and differences in the neuronal death pro-cesses activated by 3OH-kynurenine and quinolinic acid.JNeurochem 77:1310-1318.

    Google Scholar 

  • de Mello CF, Kolker S, Ahlemeyer B, et al (2001)Intrastriatal administration of 3-hydroxyglutaric acid induces convulsions and striatal lesions in rats.Brain Res 916: 70-75.

    Google Scholar 

  • Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991)Blood-brain barrier trans-port of kynurenines:implications for brain synthesis and metabolism.J Neurochem 56:2007-2017.

    Google Scholar 

  • Goodman SI, Frerman FE (2001)Organic acidemias due to defects in lysine oxidation:2-ketoadipic acidemia and glutaric acidemia.In:Scriver CR, Beaudet AL, Sly WS, Valle D,eds;Childs B,Kinzler KW,Vogelstein B,assoc eds.The Metabolic and MolecularBases of Inherited Disease, 8th edn.New York: McGraw-Hill,2195-2204.

    Google Scholar 

  • Goodman SI, Norenberg MD, Shikes RH, Breslich DJ, Moe PG (1977)Glutaric aciduria:biochemical and morphologic considerations.JPediatr 90: 746-750.

    Google Scholar 

  • Greenberg CR, Duncan AM, Gregory CA, Singal R, Goodman SI (1994)Assignment ofhuman glutaryl-CoA dehydrogenase gene (GCDH)to the short arm of chromosome 19(19p13.2)by in situ hybridization and somatic cell hybrid analysis.Genomics 21:289-290.

    Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, et al (2001)Kynurenine athway metabolism in human astrocytes:a paradox for neuronal protection.J Neurochem 78:842-853.

    Google Scholar 

  • Hankes LV, Brown RR, Lippincott S, Schmaeler M(1967)Effects of L-tryptophan load on the metabolism of tryptophan-2-C 14 in man.J Lab Clin Med 69:313-324.

    Google Scholar 

  • Heyes MP (1987)Hy othesis:a role for quinolinic acid in the neuropathology of glutaric aciduria type I.Can J Neurol Sci 14-(supplement 3):441-443.

    Google Scholar 

  • Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996)Human microglia convert L-tryptophan into the neurotoxin quinolinic acid.Biochem J 320:595-597.

    Google Scholar 

  • Kim JP, Choi DW (1987)Quinolinate neurotoxicity in cortical cell culture.Neuroscience 23:423-432.

    Google Scholar 

  • Koeller DM, Woontner M, Crnic LS, et al (2002)Biochemical,athologic and behavioral analysis of a mouse model of glutaric acidemia type I.Hum Mol Genet 11:347-357.

    Google Scholar 

  • Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2000)Maturation-dependent neurotoxicity of 3-hydroxyglutaric and glutaric acids in vitro:a new athophysiologic a proach to glutaryl-CoA dehydrogenase de ficiency.Pediatr Res 47:495-503.

    Google Scholar 

  • Kölker S, Kohr G, Ahlemeyer B, et al (2002)Ca(2 + )andNa( + )dependence of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons.Pediatr Res 52:199-206.

    Google Scholar 

  • Kölker S, Hoffmann GF, Schor DSM, et al (2003)Glutaryl-CoA dehydrogenase de ficiency:region-speci fic analysis of organic acids and acylcarnitines in post mortem brain redicts vulnerability of the utamen.Neuropediatrics 34:253-260.

    Google Scholar 

  • Kölker S, Koeller DM, Okun JG, Hoffmann GF (2004)Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase de ficiency.Ann Neurol 55:7-12.

    Google Scholar 

  • Leibel RL, Shih VE, Goodman SI, et al (1980)Glutaric acidemia:a metabolic disorder causing progressive choreoathetosis.Neurology 30:1163-1168.

    Google Scholar 

  • McDonald JW, Silverstein FS, Johnston MV (1988)Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system.Brain Res 459:200-203.

    Google Scholar 

  • McDonald JW, Behrens MI, Chung C, Bhattacharyya T, Choi DW (1997)Susceptibility to a optosis is enhanced in immature cortical neurons.Brain Res 759:228-232.

    Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994)Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.Neuron 12:529-540.

    Google Scholar 

  • Nasu S, Yamaguchi K, Sakakibara S, Imai H, Ueda I (1981)The effect of pyrazines on the metabolism of try tophan and nicotinamide adenine dinucleotide in the rat.Evidence of the formation of a potent inhibitor of aminocarboxy-muconate-semialdehyde decarboxylase from yrazinamide.Biochim Biophys Acta 677:109-119.

    Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1998)3-Hydroxykynurenine,an endogenous oxidative stress generator,causes neuronal cell death with a optotic features and region selectivity.J Neurochem 70:299-307.

    Google Scholar 

  • Perkins MN, Stone TW (1982)An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid.Brain Res 247:184-187.

    Google Scholar 

  • Porciúncula LO, Dal Pizzol A, Coitinho AS, Emanuelli T, Souza DO, Wajner M (2000)Inhibition of syna tosomal [H-3 ]glutamate uptake and [H-3 ]glutamate binding to lasma membranes from brain of young rats by glutaric acid in vitro.JNeurolSci 173:93-96.

    Google Scholar 

  • Portera-Cailliau C, Price DL, Martin LJ (1996)N-methyl-D-as artate receptor proteins NR2A and NR2B are differentially distributed in the developing rat central nervous system as revealed by subunit-speci fic antibodies.J Neurochem 66:692-700.

    Google Scholar 

  • Schwarcz R, Whetsell WO Jr, Mangano RM (1983)Quinolinic acid:an endogenous metabolite that produces axon-sparing lesions in rat brain.Science 219:316-318.

    Google Scholar 

  • Stone TW (2001)Kynurenines in the CNS:from endogenous obscurity to therapeutic importance.Prog Neurobiol 64:185-218.

    Google Scholar 

  • Stone TW, Perkins MN (1981)Quinolinic acid:a potent endogenous excitant at amino acid receptors in CNS.Eur J Pharm 72:411-412.

    Google Scholar 

  • Strauss KA, Puffenberger EG, Robinson DL, Holmes Morton-D (2003)Type I glutaric aciduria,art 1:Natural history of 77 atients.Am J Med Genet Part C:Semin Med Genet 121C:38-52.

    Google Scholar 

  • Ullrich K, Flott-Rahmel B, SchluffP, et al (1999)Glutaric aciduria ty e I:pathomechanisms of neurodegeneration.JInheritMetabDis 22:392-403.

    Google Scholar 

  • Wenzel A, Fritschy JM, Mohler H, Benke D (1997)NMDA rece tor heterogeneity during postnatal development of the rat brain:differential expression of the NR2A,NR2B, and NR2C subunit roteins.J Neurochem 68:469-478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Surtees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varadkar, S., Surtees, R. Glutaric aciduria type I and kynurenine pathway metabolites: A modified hypothesis. J Inherit Metab Dis 27, 835–842 (2004). https://doi.org/10.1023/B:BOLI.0000045767.42193.97

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOLI.0000045767.42193.97

Keywords

Navigation