Skip to main content
Log in

Excitotoxicity and bioenergetics in glutaryl-CoA dehydrogenase deficiency

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Summary: Glutaryl-CoA dehydrogenase deficiency is an inherited organic acid disorder with predominantly neurological presentation. The biochemical hallmark of this disease is an accumulation and enhanced urinary excretion of two key organic acids, glutaric acid and 3-hydroxyglutaric acid. If untreated, acute striatal damage is often precipitated by febrile illnesses during a vulnerable period of brain development in infancy or early childhood, resulting in a dystonic dyskinetic movement disorder. 3-Hydroxyglutaric and glutaric acids are structurally similar to glutamate, the main excitatory amino acid of the human brain, and are considered to play an important role in the pathophysiology of this disease. 3-Hydroxyglutaric acid induces excitotoxic cell damage specifically via activation of N-methyl-D-aspartate receptors. It has also been suggested that secondary amplification loops potentiate the neurotoxic properties of these organic acids. Probable mechanisms for this effect include cytokine-stimulated NO production, a decrease in energy metabolism, and reduction of cellular creatine phosphate levels. Finally, maturation-dependent changes in the expression of neuronal glutamate receptors may affect the vulnerability of the immature brain to excitotoxic cell damage in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bahr O, Mader I, Zschocke J,et al (2002)Adult onset glutaric aciduria type I presenting with leukoencephalopathy.Neurology 59:1802-1804.

    Google Scholar 

  • Baric I, Wagner L, Feyh P,et al (1999)Sensitivity and specificity of free and total glutaric and 3-hydroxyglutaric acids measurements by stable isotope dilution assays for the diagnosis of glutaric aciduria type I.J Inherit Metab Dis 22:867-881.

    Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG,et al (1993)Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181-4191.

    Google Scholar 

  • Beckman JS, Koppenol WH (1996)Nitric oxide,superoxide,and peroxynitrite:the good,the bad,and ugly.Am J hysiol 271:C1427-C1437.

    Google Scholar 

  • Bjugstad KB, Zawada WM, Goodman SI, Freed CR (2001)IGF-1 and bFGF reduced glutaric acid and 3-hydroxyglutaric acid toxicity in striatal cultures.J Inherit Metab Dis 24:631-647.

    Google Scholar 

  • Brismar J, Ozand PT (1995)CT and MR of the brain in glutaric acidemia type I:a review of 59 published cases and a report of 5 new patients.Am J Neuroradiol 16:675-683.

    Google Scholar 

  • Calabresi P, Centonze D, Bernardi G (2000)Cellular factors controlling neuronal vulnerability in the brain:a lesson from the striatum.Neurology 55:1249-1255.

    Google Scholar 

  • Chow CW, Haan EA, Goodman SI,et al (1988)Neuropathology of glutaric acidaemia type I. Acta Neuropathol 76:590-594.

    Google Scholar 

  • Christensen E (1993)A fibroblast glutaryl-CoA dehydrogenase assay using detritiation of 3 H-labelled glutaryl-CoA:application in the genotyping of the glutaryl-CoA dehydrogenase locus.Clim Chim Acta 220:71-80.

    Google Scholar 

  • Das AM, Lücke T, Ullrich K (2003)Glutaric aciduria type I:creatine supplementation restores creatine phosphate levels in mixed cortex cells from rat incubated with 3-hydroxyglutarate. Mol Gen Metab 78:108-111.

    Google Scholar 

  • Dawson VL, Kizushi VM, Huang PL,et al (1996)Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice.J Neurosci 16:2476-2487.

    Google Scholar 

  • De Mello CF, Kölker S, Ahlemeyer B,et al (2001)Intrastriatal administration of 3-hydroxyglutaric acid induces convulsions and excitotoxic lesions in rats.Brain Res 916: 70-75.

    Google Scholar 

  • Flott-Rahmel B, Falter C, Schluff P,et al (1997)Nerve cell lesions caused by 3-hydroxyglutaric acid:a possible mechanism for neurodegeneration in glutaric acidaemia I.J Inherit Metab Dis 20:387-390.

    Google Scholar 

  • Goodman SI, Markey SP, Moe PG,et al (1975)Glutaric aciduria:a ''new ''disorder of amino acid metabolism.Biochem Med 12:12-21.

    Google Scholar 

  • Goodman SI, Norenberg MD, Shikes RH,et al (1977)Glutaric aciduria:biochemical and morphological considerations.JPediatr 90:746-750.

    Google Scholar 

  • Greene JG, Porter RH, Eller RV, Greenamyre JT (1993)Inhibition of succinate dehydrogenase by malonic acid produces an ''excitotoxic ''lesion in rat striatum.J Neurochem 61:1151-1154.

    Google Scholar 

  • Haworth JC, Booth FA, Chudley AE,et al (1991)Phenotypic variability in glutaric aciduria type I:report of fourteen cases in five Canadian Indian kindreds.J Pediatr 118:52-58.

    Google Scholar 

  • Hewett SJ, Csernansky CA, Choi DW (1994).Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS.Neuron 13:487-494.

    Google Scholar 

  • Hoffmann GF, Athanassopoulos S, Burlina AB,et al (1996)Clinical course,early diagnosis, treatment,and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27:115-123.

    Google Scholar 

  • Koeller DM, Woontner M, Crnic LS,et al (2002)Biochemical,pathologic and behavioral analysis of a mouse model of glutaric acidemia type I.Hum Mol Genet 11:347-357.

    Google Scholar 

  • Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2000)Maturation-dependent neurotoxicity of 3-hydroxyglutaric and glutaric acids in vitro:a new pathophysiologic approach to glutaryl-CoA dehydrogenase deficiency.Pediatr Res 47:495-503.

    Google Scholar 

  • Kölker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2001a)Contribution of reactive oxygen species to 3-hydroxyglutarate neurotoxicity in primary neuronal cultures from chick embryo telencephalons.Pediatr Res 50:76-82.

    Google Scholar 

  • Kölker S, Ahlemeyer B, Hühne R, Mayatepek E, Krieglstein J, Hoffmann GF (2001b) Potentiation of 3-hydroxyglutarate neurotoxicity following induction of astrocytic iNOS in neonatal rat hippocampal cultures.Eur J Neurosci 13:2115-2122.

    Google Scholar 

  • Kölker S, Okun JG, Ahlemeyer B,et al (2002a)Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in cultures from chick embryo telencephalon.J Neurosci Res 68:424-431.

    Google Scholar 

  • Kölker S, Köhr G, Ahlemeyer B,et al (2002b)Ca 2 + and Na + dependence of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons.Pediatr Res 52:199-206.

    Google Scholar 

  • Kölker S, Mayatepek E, Hoffmann GF (2002c)White matter disease in cerebral organic acid disorders:clinical implications and suggested pathomechanisms.Neuropediatrics 33: 225-231.

    Google Scholar 

  • Kölker S, Schor DSM, Feyh P,et al (2003)Glutaryl-CoA dehydrogenase deficiency: region-specific analysis of organic acids and acylcarnitines in post mortem brain predicts vulnerability of the putamen.Neuropediatrics 34:253-260.

    Google Scholar 

  • Kölker S, Koeller DM, Okun JG, Hoffmann GF (2004)Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency.Ann Neurol 55:7-12.

    Google Scholar 

  • Latini A, Borba Rosa R, Scussiato K,et al (2002)3-Hydroxyglutaric acid induces oxidative stress and decreases the antioxidant defenses in cerebral cortex of young rats.Brain Res 956: 367-373.

    Google Scholar 

  • Leibel RL, Shih VE, Goodman SI,et al (1980)Glutaric acidemia:a metabolic disorder causing progressive choreoathethosis.Neurology 30:1163-1168.

    Google Scholar 

  • Lindner M, Kölker S, Schulze A, Christensen E, Greenberg CR, Hoffmann GF (2004)Neonatal screening for glutaryl-CoA dehydrogenase deficiency.J Inherit Metab Dis 27:851-859.

    Google Scholar 

  • Lipton SA, Rosenberg PA (1994)Excitatory amino acids as final common pathway for neurologic disorders.N Engl J Med 330:613-622.

    Google Scholar 

  • Lucas DR, Newhouse JP (1957)The toxic effect of sodium L-glutamate on the inner layers of the retina.Arch Opthalomol 58:193-204.

    Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SL, Barker JL (1986)NMDA receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321:519-522.

    Google Scholar 

  • McDonald JW, Silverstein FS, Johnston MW (1988)Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system.Brain Res 459:200-203.

    Google Scholar 

  • Molven A, Matre GE, Duran M,et al (2004)Familial hyperinsulinemia caused by a defect in the SCAD enzyme of mitochondrial fatty acid oxidation.Diabetes 53:221-227.

    Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984)Magnesium gates glutamate-activated channels in mouse cerebral neurones.Nature 307:462-465.

    Google Scholar 

  • Okun JG, Hörster F, Farkas LM,et al (2002)Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and tricarboxylic acid cycle,and synergistically acting excitotoxicity.J Biol Chem 277:14674-14680.

    Google Scholar 

  • Olney JW, Ho OL (1970).Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine.Nature 227:609-610.

    Google Scholar 

  • Pitt J, Carpenter K, Wilcken B, Boneh A (2002)3-Hydroxyglutarate excretion is increased in ketotic patients:implications for glutaryl-CoA dehydrogenase deficiency testing.J Inherit Metab Dis 25:83-88.

    Google Scholar 

  • Sattler R, Tymianski M (2000)Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3-13.

    Google Scholar 

  • Soffer D, Amir N, Elpeleg ON,et al (1992)Striatal degeneration and spongy myelinopathy in glutaric acidemia.J Neurol Sci 107:199-204.

    Google Scholar 

  • Strauss KA, Morton DH (2003)Type I glutaric aciduria,part 2:a model of acute striatal necrosis.Am J Med Genet 121C:53-70.

    Google Scholar 

  • Strauss KA, Puffenberger EG, Robinson DL, Morton DH (2003)Type I glutaric aciduria,part 1:Natural history of 77 patients.Am J Med Genet 121C:38-52.

    Google Scholar 

  • Ullrich K, Flott-Rahmel B, Schluff P,et al (1999)Glutaric aciduria type I:pathomechanism of neurodegeneration.J Inherit Metab Dis 22:392-403.

    Google Scholar 

  • Vamecq J, van Hoof F (1984)Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA.Biochem J 221:203-211.

    Google Scholar 

  • Varadkar S, Surtees R (2004)Glutaric aciduria type I and kynurenine pathway metabolites:a modified hypothesis.J Inherit Metab Dis 27:835-849.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. KÖlker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KÖlker, S., Koeller, D.M., Sauer, S. et al. Excitotoxicity and bioenergetics in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27, 805–812 (2004). https://doi.org/10.1023/B:BOLI.0000045762.37248.28

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOLI.0000045762.37248.28

Keywords

Navigation