Skip to main content
Log in

Mechanism of Superoxide Anion Generation in Intact Mitochondria in the Presence of Lucigenin and Cyanide

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the presence of cyanide and various respiratory substrates (succinate or pyruvate + malate) addition of high concentrations of lucigenin (400 μM; Luc2+) to rat liver mitochondria can induce a short-term flash of high amplitude lucigenindependent chemiluminescence (LDCL). Under conditions of cytochrome oxidase inhibition by cyanide the lucigenininduced cyanide-resistant respiration (with succinate as substrate) was not inhibited by uncouplers (FCCP) and oligomycin. Increase in transmembrane potential (Δϕ) value by stimulating F0F1-ATPase functioning (induced by addition of MgATP to the incubation medium) caused potent stimulation of the rate of cyanide-resistant respiration. At high Δϕ values (in the presence of MgATP) cyanide resistant respiration of mitochondria in the presence of succinate or malate with pyruvate was insensitive to tenoyltrifluoroacetone (TTFA) or rotenone, respectively. However, in both cases respiration was effectively inhibited by myxothiazol or antimycin A. Mechanisms responsible for induction of LDCL and cyanide resistant mitochondrial respiration differ. In contrast to cyanide-resistant respiration, generation of LDCL signal, that was suppressed only by combined addition of Complex III inhibitors, antimycin A and myxothiazol, is a strictly potential-dependent process. It is observed only under conditions of high Δϕ value generated by F0F1-ATPase functioning. The data suggest lucigenin-induced intensive generation of superoxide anion in mitochondria. Based on results of inhibitor analysis of cyanide-resistant respiration and LDCL, a two-stage mechanism of autooxidizable lucigenin cation-radical (Luc·+) formation in the respiratory chain is proposed. The first stage involves two-electron Luc2+ reduction by Complexes I and II. The second stage includes one-electron oxidation of reduced lucigenin (Luc(2e)). Reactions of Luc(2e) oxidation involve coenzyme Q-binding sites of Complex III. This results in formation of autooxidizable Luc·+ and superoxide anion generation. A new scheme for lucigenin-dependent electron pathways is proposed. It includes formation of fully reduced form of lucigenin and two-electron-transferring shunts of the respiratory chain. Lucigenin-induced activation of superoxide anion formation in mitochondria is accompanied by increase in ion permeability of the inner mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Boveris, A., Cadenas, E., and Stoppani, A. O. M. (1976) Biochem. J., 156, 435-444.

    Google Scholar 

  2. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) FEBS Lett., 416, 15-18.

    Google Scholar 

  3. Hansford, R. G., Hogue, B. A., and Mildaziene, V. (1997) J. Bioenerg. Biomembr., 29, 89-95.

    Google Scholar 

  4. Rembish, S. J., and Trush, M. A. (1994) Free Radic. Biol. Med., 17, 117-126.

    Google Scholar 

  5. Li, Y., Zhu, H., Kuppusamy, P., Roubaud, V., Zweier, J. L., and Trush, M. A. (1998) J. Biol. Chem., 273, 2015-2029.

    Google Scholar 

  6. Li, Y., Stansbury, K. H., Zhu, H., and Trush, M. A. (1999) Biochem. Biophys. Res. Commun., 262, 80-87.

    Google Scholar 

  7. Li, Y., Zhu, H., and Trush, M. A. (1999) Biochim. Biophys. Acta, 1428, 1-12.

    Google Scholar 

  8. Liochev, S. I., and Fridovich, I. (1997) Arch. Biochem. Biophys., 337, 115-120.

    Google Scholar 

  9. Vasques-Vivar, J., Hogg, N., Kirkwood, A. P. J., Martasek, P., and Kalyanaraman, B. (1997) FEBS Lett., 403, 127-130.

    Google Scholar 

  10. Liochev, S. I., and Fridovich, I. (1998) Free Radic. Biol. Med., 25, 926-928.

    Google Scholar 

  11. Liochev, S. I., and Fridovich, I. (2000) Arch. Biochem. Biophys., 373, 447-450.

    Google Scholar 

  12. Afanas'ev, I. B., Ostrachovitch, E. A., and Korkina, L. G. (1999) Arch. Biochem. Biophys., 366, 267-274.

    Google Scholar 

  13. Johnson, D., and Lardy, H. A. (1967) Meth. Enzymol., 10, 94-96.

    Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265-275.

    Google Scholar 

  15. Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. (1979) J. Membr. Biol., 49, 105-121.

    Google Scholar 

  16. Zinchenko, V. P., Kholmukhamedov, E. L., and Evtodienko, Yu. V. (1975) Stud. Biophys., 2, 91-98.

    Google Scholar 

  17. Legg, K. D., and Hercules, D. M. (1969) J. Amer. Chem. Soc., 91, 1902-1907.

    Google Scholar 

  18. Kolesova, G. M., Kapitanova, N. G., and Yaguzhinsky, L. S. (1987) Biokhimiya, 52, 715-719.

    Google Scholar 

  19. Kolesova, G. M., Vishnevetsky, S. A., and Yaguzhinsky, L. S. (1989) Biokhimiya, 54, 103-111.

    Google Scholar 

  20. Kruglov, A. G., Yurkov, I. S., Teplova, V. V., and Evtodienko, Yu. V. (2002) Biochemistry (Moscow), 67, 1262-1270.

    Google Scholar 

  21. Totter, J. R. (1964) Photochem. Photobiol., 3, 231-241.

    Google Scholar 

  22. Saxena, K., Henry, T. R., Solem, L. E., and Wallace, K. B. (1995) Arch. Biochem. Biophys., 317, 79-84.

    Google Scholar 

  23. Teplova, V. V., Kudrjavtsev, A. A., Odinokova, I. V., Evtodienko, Y. V., and Saris, N.-E. L. (1998) Biochem. Molec. Biol. Int., 45, 501-510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurkov, I.S., Kruglov, A.G., Evtodienko, Y.V. et al. Mechanism of Superoxide Anion Generation in Intact Mitochondria in the Presence of Lucigenin and Cyanide. Biochemistry (Moscow) 68, 1349–1359 (2003). https://doi.org/10.1023/B:BIRY.0000011657.28016.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRY.0000011657.28016.e4

Navigation