Skip to main content
Log in

Solubilization of Adenylyl Cyclase from Human Myometrium in a αS-Coupled Form

  • Published:
Bioscience Reports

Abstract

Adenylyl cyclase (AC) was extracted from human myometrium with either non-ionic (Lubrol-PX or Triton X-100) or zwitterionic (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS) detergents. The soluble enzyme was stimulated by forskolin, a hydrophobic activator, in the presence of Mg2+ indicating that the catalytic subunit had not been damaged after solubilization. The enzyme was also activated by 5′-guanylyl imidodiphosphate (Gpp(NH)p) showing that the catalytic unit was not separated from stimulatory guanine nucleotide binding protein (Gs) during the extraction. Both activators showed different effects on the stimulatory efficacy and potency of AC activity solobulized with detergents. Gel filtration of Lubrol-PX and CHAPS extracts over a Sepharose CL-2B column partially resolved AC and its complexes. The chromatographic profile for Lubrolsolubilized AC presented a main peak of about 200 kDa whereas CHAPS-solubilized AC showed a dominant peak of about 1100 kDa. The heterodisperse peaks obtained revealed that the catalytic AC subunit was not separated from Gs proteins after gel filtration, and that AC could be associated with other cellular proteins. When Lubrol extract was submitted to anionic-exchange chromatography, the enzyme was purified about 7.5 fold (enzymatic activity of 48.1 pmol/min/mg of protein). The catalytic subunit was co-eluted with both AC-activating proteins Gαs large (52.2 kDa) and Gαs small (48.7 kDa). This is the first demonstration of the stable physical association of AC with both αs subunits of G proteins in human myometrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hanoune, J., Pouille, Y., Tzavara, E., Shen, T., Lipskaya, L., Miyamota, N., Suzuki, Y., and Defer, N. (1997) Mol. Cell. Endocrinol. 128:179–194.

    Google Scholar 

  2. Taussig, R. and Gilman, A. G. (1995) J. Biol. Chem. 270:1-4.

    Google Scholar 

  3. Sunahara, R. K., Dessauer, C. W., and Gilman, A. G. (1996) Annu. Rev. Pharmacol. Toxicol. 36:461-480.

    Google Scholar 

  4. Hurley, J. H. (1999) J. Biol. Chem. 274:7599-7602.

    Google Scholar 

  5. Cooper, D. M. F., Mons, N., and Karpen, J. W. (1995) Nature 374:421-424.

    Google Scholar 

  6. Cooper, D. M. F., Karpen, J. W., Fagan, K. A., and Mons, N. F. (1998) Adv. Second Messenger Phosphoprotein Res. 32:23-51.

    Google Scholar 

  7. Schlegel, W., Kempner, E. S., and Rodbell, M. (1979) J. Biol. Chem. 254:5168-5176.

    Google Scholar 

  8. Gu, C., Cali, J. J., and Cooper, D. M. F. (2002) Eur. J. Biochem. 269:413-421.

    Google Scholar 

  9. Tang, W. J. and Gilman, A. G. (1992) Cell: 70:869-872.

    Google Scholar 

  10. Price, S. A. Pochun, I., Phaneuf, S., and Lopez-Bernal, A. (2000) J. Endocrinol. 164: 21-30.

    Google Scholar 

  11. Price, S. A. and Barnal, A. L. (2001) Exp. Physiol. 86:265-272.

    Google Scholar 

  12. Mhaouty-Kodja, S., Bouet-Alard, R., Limon-Boulez, I., Maltier, J. P., and Legrand, C. (1997) J. Biol. Chem. 272:31100-31106.

    Google Scholar 

  13. Suzuki, Y., Shen, T., Miyamoto, N., Defer, N., Matsuoka, I., and Hanoune, J. (1997) Biol. Reprod. 57:778-782.

    Google Scholar 

  14. Bajo, A., Carrero, I., Hristov, R. L., Valenzuela, P., Martinez, P., Cortes, J., Prieto, J. C., and Guijarro, L. G. (2000) Tissue Cell 32:399-404.

    Google Scholar 

  15. Frolich, M., Korenman, S. G., and Krall, J. F. (1983) Arch. Biochem. Biophys. 226:166-173.

    Google Scholar 

  16. Krall, J. F., Leshon, S. C., and Korenman, S. G. (1988) Biochemistry 27:5323-5328.

    Google Scholar 

  17. Bradford, M. (1976) Anal. Biochem. 72:248-254.

    Google Scholar 

  18. Houslay, M. D., Metcalfe, J. C., Warren, G. B., Hesketh, T. R., and Smith, G. A. (1976) Biochim. Biophys. Acta 436:489-494.

    Google Scholar 

  19. Gilman, A. G. (1970) Proc. Natl. Acad. Sci. USA 67:305-312.

    Google Scholar 

  20. Schleif, R. F. (1981) Protein concentration. In: Practical Methods in Molecular Biology (R. F. Schleif, and P. C. Wensink, eds.), Springer-Verlag, New York, pp. 61-88.

    Google Scholar 

  21. Mumby, S. M., Kahn, R. A., Manning, D. R., and Gilman, A. G. (1986) Proc. Natl. Acad. Sci. USA 83:265-269.

    Google Scholar 

  22. Dessauer, C. W., Scully, T. T., and Gilman, A. G. (1997) J. Biol. Chem. 272:22272-22277.

    Google Scholar 

  23. Bar-Sinai, A., Marbach, I., Shorr, R. G., and Levitzki, A. (1992) Eur. J. Biochem. 207:703-708.

    Google Scholar 

  24. Marbach, I., Bar-Sinai, A., Minich, M., and Levitzki, A. (1990) J. Biol. Chem. 265:9999-10004.

    Google Scholar 

  25. Schlegel, W., Cooper, D. M., and Rodbell, M. (1980) Arch. Biochem. Biophys. 201:678-682.

    Google Scholar 

  26. Pfeuffer, E., Dreher, R. M., Metzger, H., and Pfeuffer, T. (1985) Proc. Natl. Acad. Sci. USA 82:3086-3090.

    Google Scholar 

  27. Yeager, R. E., Heideman, W., Rosenberg, G., and Storm, D. R. (1985) Biochemistry 24:3776-3783.

    Google Scholar 

  28. Dessauer, C. W. and Gilman, A. G. (1996) J. Biol. Chem. 271:16967-16974.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajo, A.M., Prieto, J.C., Valenzuela, P. et al. Solubilization of Adenylyl Cyclase from Human Myometrium in a αS-Coupled Form. Biosci Rep 23, 175–186 (2003). https://doi.org/10.1023/B:BIRE.0000007691.17175.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIRE.0000007691.17175.d9

Navigation