Skip to main content
Log in

Study of adenylyl cyclase-GαS interactions and identification of novel AC ligands

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adenylyl cyclases (ACs) are membrane bound enzymes that catalyze the production of cAMP from ATP in response to the activation by G-protein Gαs. Different isoforms of ACs are ubiquitously expressed in different tissues involved in regulatory mechanisms in response to specific stimulants. There are 9 AC isoforms present in humans, with AC5 and AC6 proposed to play a vital role in cardiac functions. The activity of AC6 is sensitive to nitric oxide, such that nitrosylation of the protein might regulate its function. However, the information on structural determinants of nitrosylation in ACs and how they interact with Gαs is limited. Here we used homology modeling to build a molecular model of human AC6 bound to Gαs. Based on this 3D model, we predict the nitrosylation amenable cysteines, and identify potential novel ligands of AC6 using virtual ligand screening. Our model suggests Cys1004 in AC6 (subunit C2) and Cys174 in Gαs present at the AC-Gαs interface as the possible residues that might undergo reversible nitrosylation. Docking analysis predicted novel ligands of AC6 that include forskolin-based compounds and its derivatives. Further work involving site-directed mutagenesis of the predicted residues will allow manipulation of AC activity using novel ligands, and crucial insights on the role of nitrosylation of these proteins in pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smit MJ, Iyengar R (1998) Mammalian adenylyl cyclases. Adv Second Messenger Phosphoprot Res 32:1–21

    CAS  Google Scholar 

  2. Sassone-Corsi P (2012) The cyclic AMP pathway. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a011148

    Article  PubMed  PubMed Central  Google Scholar 

  3. Santhosh KT, Elkhateeb O, Nolette N, Outbih O, Halayko AJ, Dakshinamurti S (2011) Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes. Br J Pharmacol 163(6):1223–1236. https://doi.org/10.1111/j.1476-5381.2011.01306.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Krupinski J, Coussen F, Bakalyar HA, Tang WJ, Feinstein PG, Orth K, Slaughter C, Reed RR, Gilman AG (1989) Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244(4912):1558–1564

    Article  PubMed  CAS  Google Scholar 

  5. Sadana R, Dessauer CW (2009) Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17(1):5–22. https://doi.org/10.1159/000166277

    Article  PubMed  CAS  Google Scholar 

  6. Mou TC, Gille A, Suryanarayana S, Richter M, Seifert R, Sprang SR (2006) Broad specificity of mammalian adenylyl cyclase for interaction with 2′,3′-substituted purine- and pyrimidine nucleotide inhibitors. Mol Pharmacol 70(3):878–886. https://doi.org/10.1124/mol.106.026427

    Article  PubMed  CAS  Google Scholar 

  7. Tesmer JJ, Sunahara RK, Johnson RA, Gosselin G, Gilman AG, Sprang SR (1999) Two-metal-Ion catalysis in adenylyl cyclase. Science 285(5428):756–760

    Article  PubMed  CAS  Google Scholar 

  8. Nelson CP, Rainbow RD, Brignell JL, Perry MD, Willets JM, Davies NW, Standen NB, Challiss RA (2011) Principal role of adenylyl cyclase 6 in K(+) channel regulation and vasodilator signalling in vascular smooth muscle cells. Cardiovasc Res 91(4):694–702. https://doi.org/10.1093/cvr/cvr137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ishikawa Y (2003) Isoform-targeted regulation of cardiac adenylyl cyclase. J Cardiovasc Pharmacol 41(Suppl 1):S1–S4

    PubMed  CAS  Google Scholar 

  10. Ishikawa Y, Sorota S, Kiuchi K, Shannon RP, Komamura K, Katsushika S, Vatner DE, Vatner SF, Homcy CJ (1994) Downregulation of adenylylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest 93(5):2224–2229. https://doi.org/10.1172/JCI117219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Okumura S, Takagi G, Kawabe J, Yang G, Lee MC, Hong C, Liu J, Vatner DE, Sadoshima J, Vatner SF, Ishikawa Y (2003) Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci USA 100(17):9986–9990. https://doi.org/10.1073/pnas.1733772100

    Article  PubMed  CAS  Google Scholar 

  12. Gao MH, Lai NC, Giamouridis D, Kim YC, Tan Z, Guo T, Dillmann WH, Suarez J, Hammond HK (2016) Cardiac-directed expression of adenylyl cyclase catalytic domain reverses cardiac dysfunction caused by sustained beta-adrenergic receptor stimulation. JACC 1(7):617–629. https://doi.org/10.1016/j.jacbts.2016.08.004

    Article  PubMed  Google Scholar 

  13. Liu X, Thangavel M, Sun SQ, Kaminsky J, Mahautmr P, Stitham J, Hwa J, Ostrom RS (2008) Adenylyl cyclase type 6 overexpression selectively enhances beta-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):359–369. https://doi.org/10.1007/s00210-007-0196-0

    Article  PubMed  CAS  Google Scholar 

  14. McVey M, Hill J, Howlett A, Klein C (1999) Adenylyl cyclase, a coincidence detector for nitric oxide. J Biol Chem 274(27):18887–18892

    Article  PubMed  CAS  Google Scholar 

  15. Chen SC, Huang B, Liu YC, Shyu KG, Lin PY, Wang DL (2008) Acute hypoxia enhances proteins’ S-nitrosylation in endothelial cells. Biochem Biophys Res Commun 377(4):1274–1278. https://doi.org/10.1016/j.bbrc.2008.10.144

    Article  PubMed  CAS  Google Scholar 

  16. Lorch SA, Foust R 3rd, Gow A, Arkovitz M, Salzman AL, Szabo C, Vayert B, Geffard M, Ischiropoulos H (2000) Immunohistochemical localization of protein 3-nitrotyrosine and S-nitrosocysteine in a murine model of inhaled nitric oxide therapy. Pediatr Res 47(6):798–805

    Article  PubMed  CAS  Google Scholar 

  17. Qin Y, Dey A, Daaka Y (2013) Protein s-nitrosylation measurement. Methods Enzymol 522:409–425. https://doi.org/10.1016/B978-0-12-407865-9.00019-4

    Article  PubMed  CAS  Google Scholar 

  18. Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 288(37):26473–26479. https://doi.org/10.1074/jbc.R113.460261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kokkola T, Savinainen JR, Monkkonen KS, Retamal MD, Laitinen JT (2005) S-nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner. BMC Cell Biol 6(1):21. https://doi.org/10.1186/1471-2121-6-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jeffrey Man HS, Tsui AK, Marsden PA (2014) Nitric oxide and hypoxia signaling. Vitam Horm 96:161–192. https://doi.org/10.1016/B978-0-12-800254-4.00007-6

    Article  PubMed  CAS  Google Scholar 

  21. Palmer LA, Kimberly D, Brown-Steinke K, Gunter S, Jyothikumar V, Forbes MS, Lewis SJ (2015) Hypoxia-induced changes in protein s-nitrosylation in female mouse brainstem. Am J Respir Cell Mol Biol 52(1):37–45. https://doi.org/10.1165/rcmb.2013-0359OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Breitkreuz M, Hamdani N (2015) A change of heart: oxidative stress in governing muscle function? Biophys Rev 7(3):321–341. https://doi.org/10.1007/s12551-015-0175-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Marino SM, Gladyshev VN (2010) Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol 395(4):844–859. https://doi.org/10.1016/j.jmb.2009.10.042

    Article  PubMed  CAS  Google Scholar 

  24. Gaston BM, Carver J, Doctor A, Palmer LA (2003) S-nitrosylation signaling in cell biology. Mol Interv 3(5):253–263. https://doi.org/10.1124/mi.3.5.253

    Article  PubMed  CAS  Google Scholar 

  25. Chaki M, Kovacs I, Spannagl M, Lindermayr C (2014) Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS ONE 9(10):e110232. https://doi.org/10.1371/journal.pone.0110232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524. https://doi.org/10.1110/ps.062416606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kumar M, Pydi SP, Sharma S, Singh TP, Kaur P (2014) Identification of a high affinity selective inhibitor of Polo-like kinase 1 for cancer chemotherapy by computational approach. J Mol Gr Model 51:104–112. https://doi.org/10.1016/j.jmgm.2014.04.014

    Article  CAS  Google Scholar 

  28. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  29. Xue Y, Liu Z, Gao X, Jin C, Wen L, Yao X, Ren J (2010) GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS ONE 5(6):e11290. https://doi.org/10.1371/journal.pone.0011290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lee TY, Chen YJ, Lu TC, Huang HD, Chen YJ (2011) SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity. PLoS ONE 6(7):e21849. https://doi.org/10.1371/journal.pone.0021849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tannenbaum SR, White FM (2006) Regulation and specificity of S-nitrosylation and denitrosylation. ACS Chem Biol 1(10):615–618. https://doi.org/10.1021/cb600439h

    Article  PubMed  CAS  Google Scholar 

  32. Hess DT, Matsumoto A, Nudelman R, Stamler JS (2001) S-nitrosylation: spectrum and specificity. Nat Cell Biol 3(2):E46–E49. https://doi.org/10.1038/35055152

    Article  PubMed  CAS  Google Scholar 

  33. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106(6):675–683

    Article  PubMed  CAS  Google Scholar 

  34. Tatee T, Narita A, Narita K, Izumi G, Takahira T, Sakurai M, Fujita A, Hosono M, Yamashita K, Enomoto K, Shiozawa A (1996) Forskolin derivatives. I. Synthesis, and cardiovascular and adenylate cyclase-stimulating activities of water-soluble forskolins. Chem Pharm Bull (Tokyo) 44(12):2274–2279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by operating grants from Natural Sciences and Engineering Research Council (NSERC) to PC, Research Manitoba (RM) and Manitoba Chemosensory Biology (MCSB) catalyst grant to SD and University of Manitoba (Faculty of Science Interdisciplinary Grant) to JLS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashen Chelikani.

Ethics declarations

Conflict of interest

All the authors have approved the final manuscript and declared that they have no conflict of interest.

Ethical standards

All methods performed in this study were in accordance with the ethical standards of the institution.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 244 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaggupilli, A., Dhanaraj, P., Pritchard, A. et al. Study of adenylyl cyclase-GαS interactions and identification of novel AC ligands. Mol Cell Biochem 446, 63–72 (2018). https://doi.org/10.1007/s11010-018-3273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3273-4

Keywords

Navigation