Skip to main content
Log in

Changes in Antioxidative Protection in Bean Cotyledons During Natural and Continuous Irradiation-Accelerated Senescence

  • Published:
Biologia Plantarum

Abstract

We employed continuous irradiation (CL) for induction of premature senescence caused by enhanced production of reactive oxygen species. As a model plant we used bean (Phaseolus vulgaris L. cv. Jantar) cotyledons because they have well defined and a quite short life span. Senescence of bean cotyledons induced by CL progressed more rapidly than natural senescence: the life span of CL cotyledons was 13 d compared to 16 d in controls (C). Chl content was significantly lower in 10- and 13-d-old CL plants than in C plants and the change with age was not statistically significant. Activities of all antioxidative enzymes declined either with senescence onset or during whole life span. Activity of antioxidative enzymes, except ascorbate peroxidase, was lower in CL plants compared to C plants. On the contrary, contents of non-enzymatic antioxidants β-carotene and ascorbate were higher in CL plants than in C plants. No significant difference, except in the youngest cotyledons, was observed in glutathione content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, G., Wiedenroth, E.-M.: Protection against activated oxygen following re-aeration of hypoxically pretreated wheat roots. The response of the glutathione system.-J. exp. Bot. 45: 449-455, 1994.

    Google Scholar 

  • Asada, K.: Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants.-Physiol. Plant. 85: 235-241, 1992.

    Google Scholar 

  • Asada, K.: Production and action of active oxygen species in photosynthetic tissues.-In: Foyer, C.H., Mullineaux, P.M. (ed.): Causes of Photooxidative Stress and Amelioration of Defence Systems in Plants. Pp. 77-104. CRC Press, Boca Raton 1994.

    Google Scholar 

  • Bartoli, C.G., Simontacchi, M., Montaldi, E.R. Puntarulo, S.: Oxidants and antioxidants during aging of chrysanthemum petals.-Plant Sci. 129: 157-165, 1997.

    Google Scholar 

  • Becker, W., Apel, K.: Differences in gene expression between natural and artificially induced leaf senescence.-Planta 189: 74-79, 1993.

    Google Scholar 

  • Biswal, U.C., Biswal, B.: Photocontrol of leaf senescence.-Photochem. Photobiol. 39: 875-879, 1984.

    Google Scholar 

  • Borraccino, G., Mastropasqua, L., De Leonardis, S., Dipierro, S.: The role of the ascorbic acid system in delaying the senescence of oat (Avena sativa L.) leaf segments.-J. Plant Physiol. 144: 161-166, 1994.

    Google Scholar 

  • Boveris, A., Oshino, N., Chance, B.: Cellular protection of hydrogen peroxide.-Biochem. J. 128: 617-630, 1972.

    Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.

    Google Scholar 

  • Buchanan-Wollaston, V.: The molecular biology of leaf senescence.-J. exp. Bot. 307: 181-199, 1997.

    Google Scholar 

  • Buettner, G.R., Jurkiewicz, B.A.: Chemistry and biochemistry of ascorbic acid.-In: Cadenas, E., Packer, L. (ed.): Handbook of Antioxidants. Pp. 91-115. Marcel Dekker, New York 1996.

    Google Scholar 

  • De Vos, C.H., Kraak, H., Bino, R.J.: Ageing of tomato seed involves glutathione oxidation.-Physiol. Plant. 92: 131-139, 1994.

    Google Scholar 

  • Del Río, L.A., Ortega, M.G., Lopez, A.L., Gorge, J.L.: A more sensitive modification of the catalase assay with Clark oxygen electrode. Application to the kinetic study of the pea-leaf enzyme.-Anal. Biochem. 80: 409-415, 1977.

    Google Scholar 

  • Del Río, L.A., Lyon, D.S., Olah, I., Glick, B., Salin, M.L.: Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant.-Planta 158: 216-224, 1983.

    Google Scholar 

  • Evans, P.J., Gallesi, D., Mathieu, C., Hernandez, M.J., de Felipe, M., Halliwell, B., Puppo, A.: Oxidative stress occurs during soybean nodule senescence.-Planta 208: 73-79, 1999.

    Google Scholar 

  • Feng, Z.Z., Guo, A.H., Feng, Z.W.: Delay of senescence of detached cucumber cotyledons by triadimefon.-Biol. Plant. 46: 571-575, 2003.

    Google Scholar 

  • Foyer, C.H., Harbinson, J.: Relationships between antioxidant metabolism and carotenoids in the regulaton of photosynthesis.-In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (ed.): The Photochemistry of Carotenoids. Pp. 305-325. Kluwer Academic Publishers, Dordrecht 1999.

    Google Scholar 

  • Foyer, C.H., Lelandai, M., Kunert, K.J.: Photooxidative stress in plants.-Physiol. Plant. 92: 696-717, 1994.

    Google Scholar 

  • Gan, S., Amasino, R.M.: Making sence of senescence.-Plant Physiol. 113: 313-319, 1997.

    Google Scholar 

  • García-Plazaola, J.I., Hernandêz, A., Trtetxe, U., Becerril, J.M.: Regulation of the xanthophylls cycle pool size in duckweed (Lemna minor) plants.-Physiol. Plant. 116: 121-126, 2002.

    Google Scholar 

  • Goldthwaite, J.J., Laetsch, W.M.: Regulation of senescence in bean leaf discs by light and chemical growth regulators.-Plant Physiol. 42: 1757-1767, 1967.

    Google Scholar 

  • Griffith, O.W.: Determination of glutathione and gluathione disulfide using glutathione reductase and 2-vinylpyridine.-Anal. Biochem. 106: 207-212, 1980.

    Google Scholar 

  • Heinze, M., Gerhardt, S.M.: Plant catalases.-In: Baker, A., Graham, I.A. (ed.): Plant Peroxisomes. Biochemistry, Cell Biology and Biotechnological Applications. Pp. 103-140. Kluwer Academic Publishers, Dordrecht-Boston-London 2002.

    Google Scholar 

  • Hensel, L.L., Grbic, V., Baumgarten, D.A., Bleecker, A.B.: Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis.-Plant Cell 5: 553-564, 1993.

    Google Scholar 

  • Hilditch, P.: Immunological quantification of the chlorophyll alb binding protein in senescing leaves of Festuca pratensis Huds.-Plant. Sci. 45: 95-99, 1986.

    Google Scholar 

  • Hillman, J.R., Glidewell, S.M., Deighton, N.: The senescence syndrome in plants: an overview of phytogerontology.-Proc. roy. Soc. Edinburgh 102: 447-458, 1994.

    Google Scholar 

  • Jimenêz, A., Hernández, J.A., Pastori, G., Del Río, L.A., Sevilla, F.: Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves.-Plant Physiol. 118: 1327-1335, 1998.

    Google Scholar 

  • Kanazawa, S., Sano, S., Koshiba, T., Ushimaru, T.: Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence.-Physiol. Plant. 109: 211-216, 2000.

    Google Scholar 

  • Kar, M., Feierabend, J.: Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to the initiation of senescence.-Planta 160: 358-391, 1984.

    Google Scholar 

  • Kar, M., Streb, P., Hertwig, B., Feierabend, J.: Sensitivity to photodamage increases during senescence in excised leaves.-J. Plant 141: 538-544, 1993.

    Google Scholar 

  • King, G.A., Davies, K.M., Stewart, R.J., Borst, W.M.: Similarities in gene expression during the postharvest-induced senescence of spears and natural foliar senescence of asparagus.-Plant Physiol. 108: 125-128, 1995.

    Google Scholar 

  • Law, M.Y., Charles, S.A., Halliwell, B.: Glutathione and ascorbic acid in spinach (Spinacea oleracea) chloroplasts. The effect of hydrogen peroxide and paraquat.-Biochem. J. 210: 899-903, 1983.

    Google Scholar 

  • Leshem, Y.Y.: Plant senescence process and free radicals.-Free Radical Biol. Med. 5: 39-49, 1988.

    Google Scholar 

  • Longa, M.A., del Río, L.A., Palma, J.M.: Superoxide dismutases of chestnut leaves, Castanea sativa: Characterization and study of their involvement in natural leaf senescence.-Physiol. Plant. 92: 227-232, 1994.

    Google Scholar 

  • Matile, P.: Chloroplast senescence.-In: Baker, N. R., Thomas, H. (ed.): Crop Photosynthesis: Spatial and Temporal Determinants. Pp. 413-440. Elsevier, Amsterdam 1992.

    Google Scholar 

  • Matile, P., Horstensteiner, S.: Chlorophyll degradation.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 67-95, 1999.

    Google Scholar 

  • McCord, J.M., Fridovich, I.: Superoxide dismutase: an enzymic function for erythrocuprein.-J. biol. Chem. 244: 6049-6055, 1969.

    Google Scholar 

  • Munnê-Bosch, S., Alegre, L.: Plants aging increases oxidative stress in chloroplasts.-Planta 214: 608-615, 2002.

    Google Scholar 

  • Munnê-Bosch, S., Jubany-Marí, T., Alegre, L.: Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts.-Plant Cell Environ. 24: 1319-1327, 2001.

    Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867-880, 1981.

    Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249-279. 1998.

    Google Scholar 

  • Noodên, L.D., Hillsberg, J.W., Schneider, M.J.: Induction of leaf senescence in Arabidopsis thaliana by long days through a light-dosage effect.-Physiol. Plant. 96: 491-495, 1996.

    Google Scholar 

  • Padh, H.: Cellular functions of ascorbic acid.-Biochem. Cell Biol. 68: 1166-1173, 1990.

    Google Scholar 

  • Pastori, G.M., del Río, L.A.: An activated-oxygen-mediated role for peroxisomes in the mechanism of senescence of Pisum sativum L. leaves.-Planta 193: 385-391, 1994.

    Google Scholar 

  • Pauls, K.P., Thompson, J.E.: Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons.-Plant Physiol. 61: 1152-1157, 1984.

    Google Scholar 

  • Procházková, D., Sairam, R.K., Srivastava, G.C., Singh, D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves.-Plant Sci. 161: 765-771, 2001.

    Google Scholar 

  • Rabinowitch, H.D., Fridovich, I.: Superoxide radicals, superoxide dismutases and oxygen toxicity in plants.-Photochem. Photobiol. 37: 679-690, 1983.

    Google Scholar 

  • Seebba, F., Sebastiani, L., Vitagliano, C.: Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves.-Biol. Plant. 44: 41-46, 2001.

    Google Scholar 

  • Schaedle, M., Bassham, J.A.: Chloroplasts glutathione reductase.-Plant Physiol. 59: 1011-1012, 1977.

    Google Scholar 

  • Shigeoka, S., Yokota, A., Nakano, Y., Kitaoka, S.: The effect of illumination on the L-ascorbic acid content in Euglena gracilis Z.-Agr. biol. Chem. 43: 2053-2058, 1979.

    Google Scholar 

  • Sichak, S.P., Dounce, A.L.: Analysis of the peroxisomal mode of catalase.-Arch. Biochem. Biophys. 249: 286-295, 1986.

    Google Scholar 

  • Sies, H.: Oxidative Stress.-Academic Press, London 1985.

    Google Scholar 

  • Strother, S.: The role of free radicals in leaf senescence.-Gerontology 34: 151-156, 1988.

    Google Scholar 

  • Tausz, M.: The role of glutathione in plant response and adaptation to natural stress.-In: Grill, D., Tausz, M., De Kok, L.J. (ed.): Significance of Glutathione in Plant Adaptation to the Environment. Pp. 101-122. Kluwer Academic Press, Dordrecht-Boston-London 2001.

    Google Scholar 

  • Thimann, K.V.: The senescence of leaves.-In: Thimann, K.V. (ed.): Senescence in Plants. Pp. 85-115. CRC Press, Boca Raton 1980.

    Google Scholar 

  • Thompson, J.E., Barber, R.F.: The role of free radicals in senescence and wounding.-New Phytol. 105: 317-344, 1987.

    Google Scholar 

  • Weaver, L.M., Amasino, R.M.: Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants.-Plant Physiol. 127: 876-886, 2001.

    Google Scholar 

  • Wilhelmová, N., Wilhelm, J., Kutík, J., Haisel, D.: Changes in French bean cotyledon composition associated with modulated life-span.-Photosynthetica 34: 377-391, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procházková, D., Wilhelmová, N. Changes in Antioxidative Protection in Bean Cotyledons During Natural and Continuous Irradiation-Accelerated Senescence. Biologia Plantarum 48, 33–39 (2004). https://doi.org/10.1023/B:BIOP.0000024272.98338.5b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOP.0000024272.98338.5b

Navigation