Skip to main content
Log in

Effect of Short-Term Salinity on Lipid Metabolism and Ion Accumulation in Tomato Roots

  • Published:
Biologia Plantarum

Abstract

To examine the ion accumulation and membrane lipid metabolism in response to salinity we compared two tomato cvs. Pera and Hellfrucht Fruhstamm (HF), considered to be salt-tolerant and sensitive respectively. Na+ and K+ accumulation was significantly higher in roots of cv. Pera after 24 h and 72 h of 100 mM NaCl. While in cv. HF, a temporary increase in K+ accumulation at 24 h was accompanied by a sustained increase in Na+ content. Both cultivars enhanced incorporation of [32P]orthophosphate into phosphatidylinositol 4,5-bisphosphate at 24 h and 72 h of NaCl. In parallel to the increase of phosphatidylinositol 4,5-bisphosphate a decrease in phosphorylation of phosphatidic acid and phosphatidylcholine were observed in the sensitive cv. HF. Structural and signal lipid changes in response to salinity were more evident in the sensitive cv. HF. Salt tolerant cv. Pera accumulated Na+ ions in the roots without considerable modifications in lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification.-Can. J. Biochem. Physiol. 37: 911–918, 1959.

    PubMed  CAS  Google Scholar 

  • Bohra, J.S., Dörffling, K.: Potassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity.-Plant Soil 152: 299–303, 1993.

    Article  Google Scholar 

  • Bolarin, M., San Cruz, A., Cayuela, E., Perez-Alfocea, F.: Short term solute changes in leaves and roots of cultivated and wild tomato seedling under salinity.-Plant Physiol. 147: 463–468, 1995.

    CAS  Google Scholar 

  • Botella, M.A., Martinez, V., Pardines, J., Cerda, A.: Salinity induced potassium deficiency in maize plants.-J. Plant Physiol. 150: 200–205, 1997.

    CAS  Google Scholar 

  • Chapman, K.D.: Phospholipase activity during plant growth and development and in response to environmental stress.-Trends Plant Sci. 3: 419–426, 1998.

    Article  Google Scholar 

  • Cho, M.H., Shears, S.B., Boss, W.F.: Changes in phosphatydilinositol metabolism in response to hyperosmotic stress in Daucus carota L. cells grown in suspension culture.-Plant Physiol. 103: 637–647, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Chow, W.S., Ball, M.C., Anderson, J.M.: Growth and photosynthetic responses of spinach to salinity: Implications of K+ nutrition for salt tolerance.-Aust. J. Plant Physiol. 17: 563–578, 1990.

    Article  CAS  Google Scholar 

  • Cotè, G.G., Yueh, Y.G., Crain, R.C.: Phosphoinositide turnover and its role in plant signal transduction.-In: Biswas, B.B., Biswas, S. (ed.): Subcellular Biochemistry. Volume 26. Myo-Inositol Phosphate, Phosphoinositides and Signal Transduction. Pp. 317–343. Plenum Press, New York 1996.

    Google Scholar 

  • Cruz, V., Cuartero, J., Bolarin, M.C., Romero, M.: Evaluation of characters for ascertaining salt stress responses in Lycopersicon species.-J. amer. Soc. hort. Sci. 115: 1000–1003, 1990.

    CAS  Google Scholar 

  • Cuartero, J., Fernández-Muñoz, R.: Tomato and salinity.-Sci. Hort. 78: 83–125, 1999.

    Article  CAS  Google Scholar 

  • Cuartero, J., Yeo, A.R., Flowers, T.J.: Selection of donors for salt-tolerance in tomato using physiological traits.-New Phytol. 121: 63–69, 1992.

    Article  CAS  Google Scholar 

  • Einspahr, K.J., Thompson, G.A., Jr.: Transmembrane signaling via phosphastidylinositol 4,5–bisphosphate hydrolysis in plants.-Plant Physiol. 93: 361–366, 1990.

    PubMed  CAS  Google Scholar 

  • Hirayama, T., Ohto, C., Mizoguchi, T., Shinozaki, K.: A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana.-Proc. nat. Acad. Sci. USA 92: 3903–3907, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J., Droback, B.K., Dawson, A.P., Musgrave, A.: Phosphatidylinositol (4,5)bisphosphate and phosphatidylinositol (4)phosphate in plant tissues.-Plant Physiol. 89: 888–892, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, K., Katagiri, T., Iuchi, S., Yamaguchi-Shinozaki, K., Shinozaki K.: A gene encoding phosphatidylinositol-4–phosphate 5–kinase is induced by water stress and abscisic acid in Arabidopsis thaliana.-Plant J. 15: 563–568, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Munnik, T., Irvine, R.F., Musgrave, A.: Phospholipid signalling in plants.-Biochim. biophys. Acta 1389: 222–272, 1998a.

    PubMed  CAS  Google Scholar 

  • Munnik, T., Meijer, H.J.G., Ter Riet, B., Frank, W., Bartels, D., Musgrave, A.: Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate.-Plant J. 22: 1–8, 2000.

    Article  Google Scholar 

  • Munnik, T., Van Himbergen, J.A.J., Ter Riet, B., Braun, F., Irvine, R.F., Van den Ende, H., Musgrave, A.: Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan.-Planta 207: 133–145, 1998b.

    Article  CAS  Google Scholar 

  • Munns, R.: Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses.-Plant Cell Environ. 16: 15–24, 1993.

    Article  CAS  Google Scholar 

  • Pèrez Alfocea, F., Estañ, M.T., Caro, M., Bolarin, M.C.: Response of tomato cultivars to salinity.-Plant Soil 150: 203–211, 1993.

    Article  Google Scholar 

  • Pical, C., Westergren, T., Dove, S.K., Larsson, C., Sommarin, M.: Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5–biphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells.-J. biol. Chem. 274: 38232–38240, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Racagni, G., Garcia de Lema, M., Domenech, C., Machado de Domenech, E.E.: Phospholipids in Trypanosoma cruzi: Phosphoinositide composition and turnover.-Lipids 27: 275–278, 1992.

    PubMed  CAS  Google Scholar 

  • Romero, J.M., Maranon, T., Murillo, J.M.: Long-term responses of Melilotus segetalis to salinity. 2. Nutrient absorption and utilization.-Plant Cell Environ. 17: 1249–1255, 1994.

    Article  Google Scholar 

  • Wu, J.L., Seliskar, D.M., Gallagher, J.L.: Stress tolerance in the marsh plane Spartina patens: impact of the NaCl on growth and root plasma membrane lipid composition.-Physiol. Plant. 102: 307–317, 1998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Racagni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racagni, G., Pedranzani, H., Alemano, S. et al. Effect of Short-Term Salinity on Lipid Metabolism and Ion Accumulation in Tomato Roots. Biologia Plantarum 47, 373–377 (2003). https://doi.org/10.1023/B:BIOP.0000023880.33075.41

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOP.0000023880.33075.41

Navigation