Skip to main content
Log in

Molecular dynamics simulations of bovine lactoferricin: turning a helix into a sheet

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Bovine lactoferricin is a 25-residue peptide that is excised through pepsin cleavage in the stomach from the intact 80 kDa bovine milk protein lactoferrin. This basic peptide contains a single disulfide crosslink and is considerably more active as an antimicrobial peptide than the intact protein. It has been suggested that the dramatic difference in potency is related to a change in the secondary and tertiary structure of this peptide, moving from a mixed α-helical β-strand region in the protein to an amphipathic twisted antiparallel β-sheet in the peptide. Here we have used equilibrium and restrained molecular dynamics calculations to compare the stability of the solution structure of the isolated peptide with that excised from the intact protein. Simulations were performed for fully solvated peptides in the absence and presence of 250 mM salt. Our results show that the peptide as released from the protein is relatively unstable, particularly in the absence of salt. However, even though the simulations extended over 60 nsecs, no interconversion could be observed between the crystal and solution structures, unless a relatively small directional force was exerted on the peptide. A pathway for the structural transition from a helical to a sheet structure was identified in this fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JM, Jensen H, Gutteberg TJ. 2003 Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy with acyclovir. Antiviral Res 58, 209-215.

    PubMed  Google Scholar 

  • Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita H. 1992 Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1121, 130-136.

    PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. 1981 Interaction models for water in relation to protein hydration. In Intermolecular Forces pub. Reidel, Dordrecht, 331-342.

    Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. 1984 Molecular dynamics with coupling to an external bath. J Chem Phys 81, 3684-3690.

    Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R. 1995 Gromacs a message-passing parallel molecular dynamics implementation. Comp Phys Comm 91, 43-56.

    Google Scholar 

  • Bonvin AM, van Gunsteren WF. 2000 Beta-hairpin stability and folding: molecular dynamics simulations of the first beta-hairpin of tendamistat. J Mol Biol 296, 255-268.

    PubMed  Google Scholar 

  • Eliassen LJ, Berge G, Sveinbjornsson B, Svendsen JS, Vorland LH, Reldal O. 2002 Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res 22, 2703-2710.

    PubMed  Google Scholar 

  • Espinosa JF, Munoz V, Gellman SH. 2001 Interplay between hydrophobic clustering and loop propensity in beta hairpin formation. J Mol Biol 306, 397-402.

    PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. 1995 A smooth particle mesh ewald method. J Chem Phys 103, 8577-8593.

    Google Scholar 

  • Haukland HH, Ulvatne H, Sandvik K, Vorland LH. 2001 The antimicrobial peptides lactoferricin B and magainin 2 crossover the bacterial cytoplasmic membrane and reside in its cytoplasm. FEBS Lett 508, 389-393.

    PubMed  Google Scholar 

  • Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ. 1998 Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37, 4288-4298.

    PubMed  Google Scholar 

  • Ibragimova GT, Wade RC. 1998 Importance of explicit salt ions for protein stability in molecular dynamics simulations. Biophys J 74, 2906-2911.

    PubMed  Google Scholar 

  • Kabsch W, Sander C. 1983 Dictionary of protein secondary structure: pattern recognition of hydrogen bonding and geometrical features. Biopolym 22, 2577-2637.

    PubMed  Google Scholar 

  • Kuwata H, Yip TT, Tomita M, Hutchens TW. 1998 Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochim Biophys Acta 1429, 129-141.

    PubMed  Google Scholar 

  • Lindahl E, Hess B, van der Spoel W. 2001 Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7, 306-317.

    Google Scholar 

  • Meisel H, Bockelman W. 1999 Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie van Leeuwenhoek 76, 207-215.

    PubMed  Google Scholar 

  • Meisel H. 1997 Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers 43, 119-128.

    PubMed  Google Scholar 

  • Moore SA, Andersson BF, Groom CR, Haridas EM, Baker EN. 1997. Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J Mol Biol 274, 222-236.

    PubMed  Google Scholar 

  • Pellegrini A. 2003 Antimicrobial peptides from food proteins. Curr Pharm Des 9, 1225-1238.

    PubMed  Google Scholar 

  • Ramirez-Alvardo M, Kortemme T, Blanco FJ, Serrano L. 1999 Beta-hairpin and beta sheet formation in designed linear peptides. Biorg Med Chem 7, 93-103.

    Google Scholar 

  • Roy MK, Kuwabara H, Hara K, Watanabe Y, Tamai Y. 2002 Peptides from the N-terminal end of bovine lactoferrin induce apoptosis in human leukemic (HL60) cells. J Dairy Sci 85, 2065-2074.

    PubMed  Google Scholar 

  • Schibli DJ, Epand RF, Vogel HJ, Epand RM. 2002 Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem Cell Biol 80, 667-677.

    PubMed  Google Scholar 

  • Strøm MB, Haug BE, Rekdal O, Skar ML, Stensen W, Svendsen JS. 2002 Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Biochem Cell Biol 80, 65-74.

    PubMed  Google Scholar 

  • van Gunsteren WF, Kruger P, Billeter SR, Mark AE, Eising AA, Scott WRP, Huneberger PH, Tironi IG. 1996 Biomolecular simulation: the GROMOS96 mannual and user Guide. Biomos Hochschulverlag AG an der ETH Zurich, Groningen.

    Google Scholar 

  • Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM. 2002 Towards a structure function analysis of bovine lactoferricin and related tryptophan and arginine-containing peptides. Biochem Cell Biol 80, 49-63.

    PubMed  Google Scholar 

  • Wakabayashi H, Takase M, Tomita M. 2003. Lactoferricin derived from milk protein lactoferrin. Curr Pharm Des 9, 1277-1287.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, N., Tieleman, D.P. & Vogel, H.J. Molecular dynamics simulations of bovine lactoferricin: turning a helix into a sheet. Biometals 17, 217–223 (2004). https://doi.org/10.1023/B:BIOM.0000027695.99874.ea

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOM.0000027695.99874.ea

Keywords

Navigation