Skip to main content
Log in

Biological Reduction of TNT as Part of a Combined Biological–Chemical Procedure for Mineralization

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The explosive 2,4,6-trinitrotoluene (TNT), one of the most abundant and persistent contaminants at former armament factories and military sites, was cometabolically reduced by sludge (mixed culture) from a sewage plant in order to facilitate mineralization in a subsequent photochemical treatment. Under aerobic conditions, the main reduction products were aminodinitrotoluenes (ADNTs). A greater amount of the nitroaromatics (ca. 30%) was adsorbed by the sludge as was shown by a complete balance of the process using 14C-TNT. Under anaerobic conditions, TNT was further converted into ADNTs and diaminonitrotoluenes (DANTs) while only negligible adsorption to the sludge occured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtnich C, Lenke H, Klaus U, Spiteller M & Knackmuss H-J (2000) Stability of immobilized TNT derivatives in soil as a function of nitro group reduction. Environ. Sci. Technol. 34: 3698-3704

    Google Scholar 

  • Carpenter DF, McCormick NG, Cornell JH & Kaplan AM (1978) Microbial transformation of 14C-labelled TNT in an activated-sludge system. Appl. Environ. Microbiol. 35: 949- 954

    Google Scholar 

  • Corbett MD & Corbett BR (1995) Bioorganic chemistry of the arylhydroxylamine and nitrosoarene functional groups. In: Spain JC (Ed) Biodegradation of Nitroaromatic Compounds. Plenum Press, New York

    Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K & von Löw E (1999) Anaerobic incorporation of the radiolabelled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Chemosphere 38: 2081-2095

    Google Scholar 

  • Eilers A, Rüngeling E, Stündl UM & Gottschalk G (1999) Metabolism of TNT by the white-rot fungus bjerkanda daustadsm 3375 depends on cytochrome P-450. Appl. Microbiol. Biotechnol. 53: 75-80

    Google Scholar 

  • Haas R & von Löw E (1986) —Grundwasserbelastung durch eine Altlast. Die folgen einer ehemaligen Sprengstoffproduktion für die heutige Trinkwassergewinnung. Forum Städte-Hygiene 37: 33-43

    Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S & Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl. Microbiol. Biotechnol. 54: 605-618

    Google Scholar 

  • Hess TF, Lewis TA, Crawford RL, Katamneni S, Wells JH & Watts RJ (1998) Combined photocatalytic and fungal treatment for the destruction of 2,4,6-trinitrotoluene. Water Res. 32: 1481-1491

    Google Scholar 

  • Hwang H-M, Slaughter LF, Cook SM & Cui H (2000) Degradation of TNT in a freshwater environment. Bull. Environ. Contam. Toxicol. 65: 228-235

    Google Scholar 

  • Knackmuss H-J, Daun G, Lenke H & Reuss M (1998) Biological treatment of TNT-contaminated soil 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ. Sci. Technol. 32: 1956- 1963

    Google Scholar 

  • Kröger M & Fels G (2000) 14C-TNT synthesis revisited. J. Labelled Cpd. Radiopharm. 43: 217-227

    Google Scholar 

  • Kröger M & Fels G (2002) Microbiotic synthesis of 14Cringlabelled aminodinitrotoluenes (ADNT) and diaminonitrotoluenes (DANT). J. Labelled Cpd. Radiopharm. 45: 249- 255

    Google Scholar 

  • Lewis TA, Ederer MM, Crawford RL & Crawford DL (1997) Microbial transformation of 2,4,6-trinitrotoluene. J. Industr. Microbiol. Biotechnol. 18: 89-96

    Google Scholar 

  • Riefler RG & Smets BF (2000) Enzymatic reduction of TNT and related nitroarenes: kinetics linked to one-electron redox potentials. Environ. Sci. Technol. 34: 3900-3906

    Google Scholar 

  • Scheibner K, Hofrichter M, Herre A & Michels J (1997) Screening for fungi intensively mineralizing TNT. Appl. Microbiol. Biotechnol. 47: 452-457

    Google Scholar 

  • Schlesselmann E (1996) Diploma Thesis, University of Braunschweig, Braunschweig

  • Sitzmann M (1974) Chemical reduction of TNT - initial products. J. Chem. Eng. Data 19: 179-181

    Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49: 523-555

    Google Scholar 

  • Spain JC & Hughes J (2000) Biodegradation of Nitroaromatic Compounds and Explosives. CRC Press, Boca Raton

    Google Scholar 

  • Wild JR, Kalafut T, Wales ME, Rastogi VK, Naumova RP & Zaripova SK (1998) Biotransformation patterns of 2,4,6-TNT by aerobic bacteria. Curr. Microbiol. 36: 45- 54

    Google Scholar 

  • Yinon J (1990) Toxicity and Metabolism of Explosives. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, M., Schumacher, M.E., Risse, H. et al. Biological Reduction of TNT as Part of a Combined Biological–Chemical Procedure for Mineralization. Biodegradation 15, 241–248 (2004). https://doi.org/10.1023/B:BIOD.0000042914.53688.63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000042914.53688.63

Navigation