Skip to main content
Log in

Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobacter succinogenes

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a life support project. The treatment comprised a series of processes, i.e., a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g−1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20–25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ∼ 310–350 °C, p ∼ 240 bar) resulted in effective carbon liquefaction (50–60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48–60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestionin conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahring BK, Licht D, Schmidt AS, Sommer P & Thomson AB (1999) Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii. Biores. Technol. 68: 3–9

    Google Scholar 

  • Bibollet X, Bosc N, Matulova M, Delort AM, Gaudet G & Forano E (2000) 13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85. J. Biotechnol. 77(1): 37–47

    Google Scholar 

  • Bonmati A, Flotats X, Mateu L & Campos E (2001) Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Wat. Sci. Technol. 44(4): 109–116

    Google Scholar 

  • Bryant MP & Doetsch, RN (1954) A study of actively cellulolytic rod-shaped bacteria of the bovine rumen. J. Dairy Sci. 37: 1176–1183

    Google Scholar 

  • Delgenes JP, Penaud V & Moletta R (2000) Investigations on the changes in anaerobic biodegradability and biotoxicity of an industrial microbial biomass induced by a thermochemical pre-treatment. Wat. Sci. Technol. 41(3): 137–144

    Google Scholar 

  • Fields MW, Mallik S & Russell JB (2000) Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting. Appl. Microbiol. Biotechnol. 54: 570–574

    Google Scholar 

  • Fulget N, Poughon L, Richalet J & Lasseur C (1999) MELISSA: Global control strategy of the artificial ecosystem by using first principles models of the compartments. Life Sci.: Artif. Ecosyst. 24(3): 397–405

    Google Scholar 

  • Gaudet G, Forano E, Dauphin G & Delort AM (1992) Futile cycle of glycogen in Fibrobacter succinogenes as shown by in situ 1HNMR and 13C-NMR investigation. Eur. J. Biochem. 207: 155–162

    Google Scholar 

  • Greenberg AE, Clesceri LS & Eaton AD (1992) Standard methods for the examination of water and wastewater, 18th ed. American Public Health Association, Washington, DC

    Google Scholar 

  • Hansen KH, Angelidaki I & Ahring BK (1998) Anaerobic digestion of swine manure: Inhibition by ammonia. Wat. Res. 32(1): 5–12

    Google Scholar 

  • Kim KH & Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Biores. Technol. 77(2): 139–144

    Google Scholar 

  • Kohlmann KL, Westgate P, Velayudhan A, Weil J, Sarikaya A, Brewer MA, Hendrickson RL & Ladisch MR (1995) Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life-support-system. Phys. Chem. Biochem. Biol. Tech. Processes 18(1/2): 251–265

    Google Scholar 

  • Kudenko YA, Gribovskaya IV & Zolotukhin IG (2000) Physical-chemical treatment of wastes: a way to close turnover of elements in LSS. Acta Astronautica 46(9): 585–589

    Google Scholar 

  • Lehninger AL (1975) The Molecular Basis of Cell Structure and Function. Worth Publishing, London

    Google Scholar 

  • Lendormi T, Prevot C, Doppenberg F, Foussard JN, Debellefontaine H (2001) Subcritical wet oxidation of municipal sewage sludge: comparison of batch and continuous experiments. Wat. Sci. Technol. 44(5): 161–169

    Google Scholar 

  • Liu HW, Walter HK, Vogt GM, Vogt HS & Holbein BE (2002) Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield. Biotechnol. Bioeng. 77(2): 121–130

    Google Scholar 

  • Liu K (2000) Zur Hydrolyse von Biopolymeren in Wasser und Kohlendioxid unter erhöhten Drücken und Temperaturen, Ph.D Thesis, Technical University of Hamburg-Harburg

  • Lynd LR, Weimer PJ, van Zyl WH & Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66(3): 506–577

    Google Scholar 

  • Maglione G & Russell JB (1997) The adverse effect of nitrogen limitation and excess-cellobiose on Fibrobacter succinogenes S85. Appl. Microbiol. Biotechnol. 48: 720–725

    Google Scholar 

  • Martin SA & Martin JA (1998) Paper digestion by the cellulolytic ruminal bacterium Fibrobacter succinogenes. Current Microbiol. 37(6): 431–432

    Google Scholar 

  • Nowack B & Saladin R (2000) Phosphonate removal during water treatment by adsorption onto activated sludge and humic acids. Symposia paper presented before the Division of Environmental Chemistry. Vol 40(2), (pp 622–624). American Chemical Society (August 20-24, 2000).

    Google Scholar 

  • Perrin, DD (1965) Dissociation Constants of Organic Bases in Aqueous Solution. Butterworths, London

    Google Scholar 

  • Rivard CJ & Grohmann K (1991) Degradation of furfural (2-furaldehyde) to methane and carbon dioxide by an anaerobic consortium. Appl. Biochem. Biotechnol. 28-29: 285–295

    Google Scholar 

  • Saddler JN, Ramos LP & Breuil C (1993) Steam pretreatment of lignocellulosic residues. In: Saddler JN (Ed) Bioconversion of Forest and Agricultural Residues (pp 73–91). Oxford University Press, USA

    Google Scholar 

  • Sakaki T, Shibata TM, Hirosue H & Hayashi N (1996) Decomposition of cellulose in near-critical water and fermentability of the products. Energy and Fuels 10: 684–688

    Google Scholar 

  • Sanders WTM, Geerink M, Zeeman G & Lettinga G (2000) Anaerobic hydrolysis kinetics of particulate substrates. Wat. Sci. Technol. 41(3): 17–24

    Google Scholar 

  • Schieder D, Schneider R & Bischof F (2000) Thermal hydrolysis (TDH) as a pretreatment method for the digestion of organic waste. Wat. Sci. Technol. 41(3): 181–187

    Google Scholar 

  • Schmidt AS & Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Biores. Technol. 64(2): 139–151

    Google Scholar 

  • Schober G, Schafer J, Schmid-Staiger U, Trosch W (1999) One and two-stage digestion of solid organic waste. Wat. Res. 33(3): 854–860

    Google Scholar 

  • Strayer RF & Atkinson CF (1997) An overview: Recycling nutrients from crop residues for space applications. Compost Science & Utilization 5(3): 25–31

    Google Scholar 

  • Stroot PG, McMahon KD, Mackie RI & Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions - I. Digester performance. Wat. Res. 35(7): 1804–1816

    Google Scholar 

  • Van de Steene M, Van Vooren L, Ottoy JP & Vanrolleghem PA (2002) Automatic buffer capacity model building for advanced interpretation of titration curves. Env. Sci. Tech. 36(4): 715–723

    Google Scholar 

  • Van Soest PJ (1963) Use of detergent in the analysis of fibrous feed II - A rapid method for the determination of fiber and lignin. J. Ass. Anal. Chem. 46, 829–835

    Google Scholar 

  • Van Soest PJ, Robertson JB & Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10): 3583–3597

    Google Scholar 

  • Van Vooren L, Lessard P, Ottoy JP & Vanrolleghem PA (1999) pH buffer capacity based monitoring of algal wastewater treatment. Environ. Technol. 20(6): 547–561

    Google Scholar 

  • Walter W, Harke HP, Polchow R (1967) Das Verhalten von Glykokoll, Alanin, α-Buttersäure, Leucin, Phenylalanin, und Asparaginsäure unter hydrothermalen Bedingungen. Zeitschrift Für Naturforschung 22b(9): 931–937

    Google Scholar 

  • Zhang RH & Zhang ZQ (1999) Biogasification of rice straw with an anaerobic-phased solids digester system. Biores. Technol. 68(3): 235–245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Lissens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lissens, G., Verstraete, W., Albrecht, T. et al. Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobacter succinogenes . Biodegradation 15, 173–183 (2004). https://doi.org/10.1023/B:BIOD.0000026515.16311.4a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000026515.16311.4a

Navigation