Skip to main content
Log in

Model Independent Parametric Decision Making

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Accurate knowledge of the effect of parameter uncertainty on process design and operation is essential for optimal and feasible operation of a process plant. Existing approaches dealing with uncertainty in the design and process operations level assume the existence of a well defined model to represent process behavior and in almost all cases convexity of the involved equations. However, most of the realistic case studies cannot be described by well characterised models. Thus, a new approach is presented in this paper based on the idea of High Dimensional Model Reduction technique which utilize a reduced number of model runs to build an uncertainty propagation model that expresses process feasibility. Building on this idea a systematic iterative procedure is developed for design under uncertainty with a unique characteristic of providing parametric expression of the optimal objective with respect to uncertain parameters. The proposed approach treats the system as a black box since it does not rely on the nature of the mathematical model of the process, as is illustrated through a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee, I. and M.G. Ierapetritou. (2003). "Parametric Process Synthesis for General Nonlinear Models." Computers and Chemical Engineering 27, 1499.

    Article  Google Scholar 

  • Birge, J.R. and F. Louveaux. (1997). Introduction to Stochastic Programming. Springer Series in Operations Research. Berlin: Springer.

    Google Scholar 

  • Box, G.E.P. and N.R. Draper. (1987). Empirical Model Building and Response Surfaces.New York: Wiley.

    Google Scholar 

  • Diwekar, U. (2002). "Optimization under Uncertainty: An Overview." SIAG/OPT Views-and-News 13, 1–8.

    Google Scholar 

  • Gal, T. (1984). "Linear Parametric Programming-A Brief Survey." Mathematical Programming Study 21, 43.

    Google Scholar 

  • Ganesh, N. and L.T. Biegler. (1987). "A Reduced Hessian Strategy for Sensitivity Analysis of Optimal Flowsheets." AIChE Journal 33, 282–296.

    Article  Google Scholar 

  • Goyal, V. and M.G. Ierapetritou. (2002). "Determination of Operability Limits Using Simplicial Approximation." AIChE Journal 48, 2902–2909.

    Article  Google Scholar 

  • Goyal, V. and M.G. Ierapetritou. (2003). "A Novel Framework for Evaluating the Feasibility/Operability of Non-Convex Processes." AIChE Journal 49, 1233–1240.

    Article  Google Scholar 

  • Grossmann, I.E. and R.W.H. Sargent. (1978). "Optimum Design of Chemical Plants with Uncertain Parameters." AIChE Journal 24, 1021–1028.

    Article  Google Scholar 

  • Grossmann, I.E. and K.P. Halernane. (1982). "A Decomposition Strategy for Designing Flexible Chemical Plants." AIChE Journal 28, 686–694.

    Article  Google Scholar 

  • Halemane, K.P. and I.E. Grossmann. (1983). "Optimal Process Design under Uncertainty." AIChE Journal 29, 425–433.

    Article  Google Scholar 

  • Hene, T.S., V. Dua, and E.N. Pistikopoulos. (2002). "A Hybrid Parametric/Stochastic Programming Ap-proach for Mixed-Integer Nonlinear Problems under Uncertainty." Industrial and Engineering Chemistry Research 41, 67–77.

    Article  Google Scholar 

  • Ierapetritou, M.G., J. Acevedo, and E.N. Pistikopoulos. (1996). "An Optimization Approach for Process Engineering Problems under Uncertainty." Computers and Chemical Engineering 20, 703–709.

    Google Scholar 

  • Ierapetritou, M.G. (2001). "A New Approach for Quantifying Process Feasibility: Convex and 1-D Quasi-Convex Regions." AIChE Journal 47, 1407–1417.

    Article  Google Scholar 

  • Jenkins, L. (1982). "Parametric Mixed-Integer Programming: An Application to Solid Waste Management." Management Science 28, 1270–1284.

    Google Scholar 

  • Jenkins, L. (1990). "Parametric Methods in Integer Linear Programming." Annals of Operation Research 27, 77–96.

    Google Scholar 

  • Jenkins, L. and D. Peters. (1987). "A Computational Comparison of Gomory and Knapsack Cuts." Computers and Operation Research 14, 449–456.

    Google Scholar 

  • Jongen, H.T. and G.W. Weber. (1990). "On Parametric Nonlinear Programming." Annals of Operation Research 27, 253–259.

    Google Scholar 

  • Kubic, W.L. and F.P. Stein. (1988). "A Theory of Design Reliability Using Probability and Fuzzy Sets." AIChE Journal 34, 583–601.

    Google Scholar 

  • Loh, W.L. (1996). "On Latin Hypercube Sampling." Annals of Statistics 24, 2058–2080.

    Google Scholar 

  • Lu, R., Y. Luo, and J.P. Conte. (1994). "Reliability Evaluation of Reinforced Concrete Beam." Structural Safety 14, 277–298.

    Article  Google Scholar 

  • McRae, G.J., J.W. Tilden, and J.H. Seinfeld. (1982). "Global Sensitivity Analysis-A Computational Im-plementation of the Fourier Amplitude Sensitivity Analysis (FAST)." Computers and Chemical Engineering 6, 15–25.

    Article  Google Scholar 

  • Ohtake, Y. and N. Nishida. (1985). "A Branch and Bound Algorithm for 0-1 Parametric Mixed-Integer Programming." Operations Research Letters 4, 41–45.

    Google Scholar 

  • Paules, G.E. and C.A. Floudas. (1992). "Stochastic Programming in Process Synthesis: A Two-Stage Model with MINLP Recourse for Multiperiod Heat-Integrated Distillation Sequences." Computers and Chemical Engineering 16, 189–210.

    Article  Google Scholar 

  • Pistikopoulos, E.N. and T.A. Mazzuchi. (1990). "A Novel Flexibility Analysis Approach for Processes with Stochastic Parameters." Computers and Chemical Engineering 14, 991–1000.

    Article  Google Scholar 

  • Rabitz, H. and O. Alis. (1999). "General Foundations of High Dimensional Model Representations." Journal of Mathematical Chemistry 25, 197–233.

    Article  Google Scholar 

  • Rabitz, H., O. Alis, J. Shorter, and K. Shim. (1998). "Efficient Input-Output Model Representations." Computer Physics Communications 117(1), 11–20.

    Google Scholar 

  • Reinhart, H.J., D.W.T. Rippin. (1986). "The Design of Flexible Batch Chemical Plants." In Annual AIChE Meeting, New Orleans, Paper No. 50e.

  • Saboo, A.K., M. Morari, and D.C. Woodcock. (1983). "Design of Resilient Processing Plants-VIII. A Resilience Index for Heat Exchanger Networks." Chemical Engineering Science 40, 1553–1565.

    Google Scholar 

  • Sahinidis, N.V., I.E. Grossmann, R.E. Fornari, and M. Chathrathi. (1989). "Optimization Model for Long-Range Planning in Chemical Industry." Computers and Chemcal Engineering 13, 1049–1063.

    Google Scholar 

  • Shorter, J., P.C. Ip, and H. Rabitz. (1999). "An Efficient Chemical Kinetics Solver Using High Dimensional Model Representations." Journal of Physical Chemistry A 103, 7192–7198.

    Article  Google Scholar 

  • Sobol, I.M. (1994). A Primer for Monte Carlo Method. CRC Press.

  • Straub, D.A. and I.E. Grossmann. (1993). "Design Optimization of Stochastic Flexibility." Computers and Chemical Engineering 17, 339.

    Article  Google Scholar 

  • Swaney, R.E. and I.E. Grossmann. (1985). "An Index of Operational Flexibility in Chemical Process Design-Part I: Formulation and Theory." AIChE Journal 31, 621–630.

    Google Scholar 

  • Takamatsu, T., I. Hashimoto, and H. Ohno. (1970). "Optimal Design of a Large Complex System from the Viewpoint of Sensitivity Analysis." Industrial Engineering Chemistry Process Design and Development 9, 368–379.

    Google Scholar 

  • Wang, S.W., H. Levy II, G. Li, and H. Rabitz. (1999). "Fully Equivalent Operational Models for At-mospheric Chemical Kinetics within Global Chemistry-Transport Models." Journal of Geophysical Research 104(D23), 30417–30426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, I., Ierapetritou, M.G. Model Independent Parametric Decision Making. Ann Oper Res 132, 135–155 (2004). https://doi.org/10.1023/B:ANOR.0000045280.55945.e8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ANOR.0000045280.55945.e8

Navigation