Skip to main content
Log in

An Engineered Heparin-Binding Form of VEGF-E (hbVEGF-E). Biological effects in vitro and mobilizatiion of precursor cells

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF-A) is the founding member of a family of angiogenic proteins with various binding abilities to three cognate VEGF receptors. Previously, a gene encoding from the genome of parapox orf virus (OV) with about 25% amino acid identity to mammalian VEGF-A was named VEGF-E and shown to bind and specifically activate the vascular endothelial growth factor receptor VEGFR-2 (KDR/flk-1). Here, we have generated a novel heparin-binding form of VEGF-E by introducing the heparin-domain of the human VEGF-A165 splice variant into the viral VEGF-E protein. Recombinant heparin-binding VEGF-E (hbVEGF-E) is shown to stimulate proliferation and sprout formation of macro- and microvascular endothelial cells to a similar extent as the parental OV-VEGF-E but fails to activate peripheral mononuclear cells. However, hbVEGF-E is more potent in binding competition assays with primary human endothelial cells when compared to the OV-VEGF-E. This can be explained by our finding that binding of hbVEGF-E but not of parental OV-VEGF-E to the VEGFR-2 is strongly increased by the addition of neuropilin-1 (NP-1), a cognate co-receptor for VEGF-A. The engineered hbVEGF-E was compared with the VEGFR-1 selective and also heparin-binding form of placenta growth factor (PlGF-2)in vivo. Both heparin-binding homologues induced mobilization of endothelial progenitor cells from the bone marrow and gave rise to similar colony numbers of myeloic cells in a colony-forming assay. These findings suggest that both VEGFR-1 and VEGFR-2 are involved in stem cell mobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Comm 1989; 161: 851–8.

    Article  PubMed  CAS  Google Scholar 

  2. Senger D, Galli J, Dvorak AM et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–5.

    PubMed  CAS  Google Scholar 

  3. Asahara T, Takahashi T, Masuda H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells EMBO J 1999; 18: 3964–72.

    Article  PubMed  CAS  Google Scholar 

  4. Gabrilovich D, Ishida T, Oyama T et al. Decreased antien presentation by dendritic cells in patients with breast cancer. Blood 1998; 92: 4150–66.

    PubMed  CAS  Google Scholar 

  5. Joukov V, Pajusola K, Kaipainen A et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290–8.

    PubMed  CAS  Google Scholar 

  6. Achen MG, Jeltsch M, Kukk E et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGFR receptor 2 (Flk) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 1998; 95: 548–53.

    Article  PubMed  CAS  Google Scholar 

  7. Lyttle DJ, Fraser KM, Fleming SB et al. Homologs of vascular endothelial growth factor are encoded by poxvirus orf virus. J Virol 1994; 68: 84–92.

    PubMed  CAS  Google Scholar 

  8. Meyer M, Clauss M, Lepple-Wienhues A et al. A novel vascular endothelial growth factor encoded by orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (flt-1) receptor tyrosine kinases. EMBO J 1999; 18: 363–74.

    Article  PubMed  CAS  Google Scholar 

  9. Ogawa S, Oku A, Sawano A et al. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitogenic activity without heparin-binding domain. J Biol Chem 1998; 273: 31273–82.

    Article  PubMed  CAS  Google Scholar 

  10. Wise LM, Veikkola T, Mercer AA et al. Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci 1999; 96: 3071–6.

    Article  PubMed  CAS  Google Scholar 

  11. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 1992; 267: 6093–8.

    PubMed  CAS  Google Scholar 

  12. Tessler S, Rockwel P, Hicklin D et al. Heparin modulated the interaction of VEGF165 with soluble and cell-associated flkreceptors. J Biol Chem 1994; 269: 12456–61.

    PubMed  CAS  Google Scholar 

  13. Fiebich B, Jäger B, Schoellmann C et al. Synthesis and assembly of a functionally active recombinant vascular endothelial growth factor homodimers in insect cells. Eur J Biochem 1993; 211: 19–26.

    Article  PubMed  CAS  Google Scholar 

  14. Hauser S, Weich HA. A heparin-binding form of placenta growth factor (P1GF-2) is expressed in human umbilical vein endothelial cells and in placenta. Growth Factors 1993; 9: 259–68.

    Article  PubMed  CAS  Google Scholar 

  15. Roeckl W, Hecht D, Sztajer H et al. Differential binding characteristics and cellular inhibition by soluble forms of KDR and FLT-1. J Exp Cell Res 1998; 241: 161–70.

    Article  CAS  Google Scholar 

  16. Shimizu M, Murakami Y, Suto F, Fujisawa H. Determination of cell adhesion sites of neuropilin-1. J Cell Biol 2000; 148: 1283–93.

    Article  PubMed  CAS  Google Scholar 

  17. Weindel K, Folkman J, Marmé D, Weich HA. AIDS-associated Kaposi's sarcoma cells in culture express vascular endothelial growth factor (VEGF). Biochem Biophys Res Comm 1992; 183: 1167–74.

    Article  PubMed  CAS  Google Scholar 

  18. Nehls V, Drenckhahn D. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 1995; 50: 311–22.

    Article  PubMed  CAS  Google Scholar 

  19. Soker S, Miao HQ, Nomi M et al. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 2002; 85: 357–68.

    Article  PubMed  CAS  Google Scholar 

  20. Soker S, Takashima S, Miao HQ et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92: 735–45.

    Article  PubMed  CAS  Google Scholar 

  21. Higashiyama S, Abrahm J, Miller J et al. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 1991; 251: 936–9.

    PubMed  CAS  Google Scholar 

  22. Leung DW, Cachianes G, Kuang W-J et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–12.

    PubMed  CAS  Google Scholar 

  23. Ruppert R, Hoffmann E, Sebald W. Human bone morphogenic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem 1996; 237: 295–302.

    Article  PubMed  CAS  Google Scholar 

  24. Brem H, Klagsbrun M. The role of firbroblast growth factors and related oncogenes in tumor growth. Cancer Treat Res 1992; 63: 211–31.

    PubMed  CAS  Google Scholar 

  25. Gengrinovitch S, Berman B, David G et al. Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 1999; 274: 10816–22.

    Article  PubMed  CAS  Google Scholar 

  26. Soker S, Svahn CM, Neufeld G. Vascular endothelial growth factor is inactivated by binding to alpha 2-macroglobulin and the binding is inhibited by heparin. J Biol Chem 1993; 268: 7685–91.

    PubMed  CAS  Google Scholar 

  27. Lyden D, Hattori K, Dias S et al. Impaired recruitment of bonemarrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194–1201.

    Article  PubMed  CAS  Google Scholar 

  28. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–7.

    Article  PubMed  CAS  Google Scholar 

  29. Rafii S, Heissig B, Hattori K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther 2002; 9: 631–41.

    Article  PubMed  CAS  Google Scholar 

  30. Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–37.

    Article  PubMed  CAS  Google Scholar 

  31. Gerber HP, Malik AK, Solar GR et al. VEGF regulates hematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 417: 954–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert A. Weich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heil, M., Mitnacht-Krauss, R., Issbrücker, K. et al. An Engineered Heparin-Binding Form of VEGF-E (hbVEGF-E). Biological effects in vitro and mobilizatiion of precursor cells . Angiogenesis 6, 201–211 (2003). https://doi.org/10.1023/B:AGEN.0000021391.88601.92

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGEN.0000021391.88601.92

Navigation