Skip to main content

VEGF A

  • Living reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 148 Accesses

Abstract

VEGF-A is the founding member of the VPF/VEGF family of proteins that also includes VEGFs B, C and D as well as PlGF (placenta growth factor) and a related viral protein, VEGF-E (Dvorak 2002, 2003; Ferrara et al. 2003; Mukhopadhyay et al. 2007; Bry et al. 2010; Hagberg et al. 2010; Shibuya and Claesson-Welsh 2006; Veikkola and Alitalo 1999). VEGF-A, the subject of this chapter, has critical roles in vasculogenesis and pathological and physiological angiogenesis, acting through receptors (VEGFR-1, VEGFR-2 and neuropilin) that are expressed on vascular endothelium as well as on certain other cell types (Fig. 1) (Shibuya and Claesson-Welsh 2006; Veikkola and Alitalo 1999; Bielenberg et al. 2006). The product of a single gene, VEGF-A is alternatively spliced to form several proteins of different lengths, properties and functions. Originally discovered as a potent vascular permeabilizing factor (VPF) (Senger et al. 1983; Dvorak et al. 1979), VEGF-A is also an endothelial cell motogen and mitogen, profoundly alters the pattern of endothelial cell gene expression, and protects endothelial cells from apoptosis (Benjamin et al. 1999) and senescence (Dvorak 2003). Recently, VEGF-A has been found to have additional critical roles in hematopoiesis and in expansion and differentiation of bone marrow endothelial cell precursors (Seandel et al. 2008), in maintenance of the nervous system (Ruiz de Almodovar et al. 2009), and in development. Mice lacking even one copy of the VEGF-A gene are embryonic lethal (Ferrara et al. 2003; Carmeliet 2003). VEGFs C and D are essential for development of the lymphatic system (Veikkola and Alitalo 1999), VEGF-B has a role in the development of coronary arteries and in fatty acid metabolism (Bry et al. 2010; Hagberg et al. 2010), and PlGF has important roles in pathological angiogenesis (Carmeliet 2003; Luttun et al. 2002). VEGF-A also induces abnormal lymphangiogenesis (Nagy et al. 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103:159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan HS, van den Akker NM, Qiu Y, et al. The alternatively spliced anti-angiogenic family of VEGF isoforms VEGFxxxb in human kidney development. Nephron Physiol. 2008;110:p57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M. Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res. 2006;312:584–93.

    Article  CAS  PubMed  Google Scholar 

  • Bry M, Kivela R, Holopainen T, et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation. 2010;122:1725–33.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 2003;162:1747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak HF, Orenstein NS, Carvalho AC, et al. Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol. 1979;122:166–74.

    CAS  PubMed  Google Scholar 

  • Dvorak HN, Senger DR, Dvorak AM, Harvey VS, McDonagh J. Regulation of extravascular coagulation by microvascular permeability. Science. 1985;227:1059–61.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol. 1996;59:100–15.

    CAS  PubMed  Google Scholar 

  • Eichmann A, Le Noble F, Autiero M, Carmeliet P. Guidance of vascular and neural network formation. Curr Opin Neurobiol. 2005;15:108–15.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010;21:687–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  • Hagberg CE, Falkevall A, Wang X, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature. 2010;464:917–21.

    Article  CAS  PubMed  Google Scholar 

  • Heer K, Kumar H, Read JR, Fox JN, Monson JR, Kerin MJ. Serum vascular endothelial growth factor in breast cancer: its relation with cancer type and estrogen receptor status. Clin Cancer Res. 2001;7:3491–4.

    CAS  PubMed  Google Scholar 

  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  • Jain RK. Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer. 2008;8:309–16.

    Article  CAS  PubMed  Google Scholar 

  • LeCouter J, Moritz DR, Li B, et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science. 2003;299:890–3.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005;169:681–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med. 2002;8:831–40.

    CAS  PubMed  Google Scholar 

  • Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood. 2001;98:1904–13.

    Article  CAS  PubMed  Google Scholar 

  • Medinger M, Fischer N, Tzankov A. Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol. 2010;2010:729725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay D, Bhattacharya R, Hughes D. Vascular permeability factor/vascular endothelial growth factor and its receptors: evolving paradigms in vascular biology and cell signaling. In: Aird W, editor. The endothelium: a comprehensive reference. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  • Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med. 2002;196:1497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Dvorak HF, Dvorak AM. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol Mech Dis. 2007;2:251–75.

    Article  CAS  Google Scholar 

  • Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Chang SH, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer. 2009;100:865–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF. Heterogeneity of the tumor vasculature. Semin Thromb Hemost. 2010;36:321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Dvorak AM, Dvorak HF. Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med. 2012;2:a006544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulaki V, Mitsiades CS, McMullan C, et al. Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab. 2003;88:5392–8.

    Article  CAS  PubMed  Google Scholar 

  • Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995;108(Pt 6):2369–79.

    CAS  PubMed  Google Scholar 

  • Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev. 2009;89:607–48.

    Article  CAS  PubMed  Google Scholar 

  • Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  CAS  PubMed  Google Scholar 

  • Seandel M, Butler J, Lyden D, Rafii S. A catalytic role for proangiogenic marrow-derived cells in tumor neovascularization. Cancer Cell. 2008;13:181–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47–71.

    Article  CAS  PubMed  Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312:549–60.

    Article  CAS  PubMed  Google Scholar 

  • Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 2012;72:1909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998;92:735–45.

    Article  CAS  PubMed  Google Scholar 

  • Stalmans I, Ng YS, Rohan R, et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest. 2002;109:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999;9:211–20.

    Article  CAS  PubMed  Google Scholar 

  • Wirzenius M, Tammela T, Uutela M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007;204:1431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–92.

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A. 1996;93:14765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Dvorak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Dvorak, H. (2014). VEGF A. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6613-0_2-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6613-0_2-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6613-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics