Skip to main content
Log in

Combination of Vascular Endothelial Growth Factor (VEGF) and Thymidine Phosphorylase (TP) to Improve Angiogenic Gene Therapy

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

To improve current angiogenic gene therapy with a vascular endothelial growth factor (VEGF)-encoding plasmid (Baumgartner et al. Circulation 1998; 97: 1114–23 [1]; Kusumanto et al. Fifth Annual Meeting of the American Society of Gene Therapy, Boston, 2002, Abstr. 621 [2]), we have generated a combination plasmid, encoding the VEGF gene and the thymidine phosphorylase (TP, also known as platelet-derived endothelial growth factor (PD-ECGF) or gliostatin (GLS)) gene: phVEGF165-TP.MB. Upon transfection in COS-7 cells both gene products were expressed and functional as shown by Western blots, ELISAs and bioassays. Culture supernatants of COS-7 cells transfected with this plasmid were able to induce endothelial proliferation. In an in vitro angiogenesis assay with recombinant proteins, TP was able to increase VEGF-induced tube formation. The phVEGF165-TP.MB plasmid is therefore a promising candidate for in vivo angiogenesis studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner I, Pieczek A, Manor O et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998; 97: 1114–23.

    PubMed  CAS  Google Scholar 

  2. Kusumanto YH, Mulder NH, Dullaart RPF et al. Phase III comparison of intramuscular delivery of naked plasmid encoding Vascular Endothelial Growth Factor with placebo in diabetic patients with critical limb ischemia. Conference abstract, Fifth Annual Meeting of the American Society of Gene Therapy, Boston 2002; Nr. 621.

  3. Isner JM, Pieczek A, Schainfeld R et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996; 348: 370–4.

    Article  PubMed  CAS  Google Scholar 

  4. Shyu KG, Chang H, Wang BW et al. Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. Am J Med 2003; 114: 85–92.

    Article  PubMed  CAS  Google Scholar 

  5. Simovic D, Isner JM, Ropper AH et al. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001; 58: 761–8.

    Article  PubMed  CAS  Google Scholar 

  6. Makinen K, Manninen H, Hedman M et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: A randomized, placebocontrolled, double-blinded phase II study. Mol Ther 2002; 6: 127–33.

    Article  PubMed  CAS  Google Scholar 

  7. Lathi KG, Vale PR, Losordo DW et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease: Anesthetic management and results. Anesth Analg 2001; 92: 19–25.

    Article  PubMed  CAS  Google Scholar 

  8. Sylven C, Sarkar N, Ruck A et al. Myocardial Doppler tissue velocity improves following myocardial gene therapy with VEGFA165 plasmid in patients with inoperable angina pectoris. Coron Artery Dis 2001; 12: 239–43.

    Article  PubMed  CAS  Google Scholar 

  9. Losordo DW, Vale PR, Hendel RC et al. Phase 1/2 placebocontrolled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002; 105: 2012–8.

    Article  PubMed  CAS  Google Scholar 

  10. Rajagopalan S, Mohler ER, III, Lederman RJ et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: A phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003; 108: 1933–8.

    Article  PubMed  CAS  Google Scholar 

  11. Miyazono K, Okabe T, Urabe A et al. Purification and properties of an endothelial cell growth factor from human platelets. J Biol Chem 1987; 262: 4098–103.

    PubMed  CAS  Google Scholar 

  12. Haraguchi M, Miyadera K, Uemura K et al. Angiogenic activity of enzymes. Nature 1994; 368: 198.

    Article  PubMed  CAS  Google Scholar 

  13. Ishikawa F, Miyazono K, Hellman U et al. Identification of angiogenic activity and the cloning and expression of plateletderived endothelial cell growth factor. Nature 1989; 338: 557–62.

    Article  PubMed  CAS  Google Scholar 

  14. Moghaddam A, Zhang HT, Fan TP et al. Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 1995; 92: 998–1002.

    Article  PubMed  CAS  Google Scholar 

  15. Hotchkiss KA, Ashton AW, Klein RS et al. Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res 2003; 63: 527–33.

    PubMed  CAS  Google Scholar 

  16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annal Biochem 1976; 72: 248–54.

    Article  CAS  Google Scholar 

  17. Evrard A, Cuq P, Ciccolini J et al. Increased cytotoxicity and bystander effect of 5-fluorouracil and 5-deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase. Br J Cancer 1999; 80: 1726–33.

    Article  PubMed  CAS  Google Scholar 

  18. Sark MW, Timmer-Bosscha H, Meijer C et al. Cellular basis for differential sensitivity to cisplatin in human germ cell tumour and colon carcinoma cell lines. Br J Cancer 1995; 71: 684–90.

    PubMed  CAS  Google Scholar 

  19. Jaffe EA, Nachman RL, Becker CG et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973; 52: 2745–56.

    Article  PubMed  CAS  Google Scholar 

  20. Van Hinsberg VW, Sprengers ED, Kooistra T. Effect of thrombin on the production of plasminogen activators and PA inhibitor-1 by human foreskin microvascular endothelial cells. Thromb Haemost 1987; 57: 148–53.

    PubMed  CAS  Google Scholar 

  21. Koolwijk P, van Erck MG, de Vree WJ et al. Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 1996; 132: 1177–88.

    Article  PubMed  CAS  Google Scholar 

  22. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 2002; 29: 10–4.

    PubMed  CAS  Google Scholar 

  23. Thurston G, Suri C, Smith K et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999; 286: 2511–4.

    Article  PubMed  CAS  Google Scholar 

  24. Asahara T, Chen D, Takahashi T et al. Tie2 receptor ligands, Angiopoietin-1 and Angiopoietin-2 modulate VEGF-induced postnatal neovascularization. Circ Res 1998; 83: 233–40.

    PubMed  CAS  Google Scholar 

  25. Steed DL. Clinical evaluation of recombinant human plateletderived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg 1995; 21: 71–8.

    Article  PubMed  CAS  Google Scholar 

  26. Payne WG, Ochs DE, Meltzer DD et al. Long-term outcome study of growth factor-treated pressure ulcers. Am J Surg 2001; 181: 81–6.

    Article  PubMed  CAS  Google Scholar 

  27. Masaki I, Yonemitsu Y, Yamashita A et al. Angiogenic gene therapy for experimental critical limb ischemia: Acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 2002; 90: 966–73.

    Article  PubMed  CAS  Google Scholar 

  28. Moghaddam A, Bicknell R. Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry 1992; 31: 12141–6.

    Article  PubMed  CAS  Google Scholar 

  29. Hagiwara K, Stenman G, Honda H et al. Organization and chromosomal localization of the human platelet-derived endothelial cell growth factor gene. Mol Cell Biol 1991; 11: 2125–32.

    PubMed  CAS  Google Scholar 

  30. Zhu GH, Lenzi M, Schwartz EL. The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells. Oncogene 2002; 21: 8477–85.

    Article  PubMed  CAS  Google Scholar 

  31. Finkenzeller G, Sparacio A, Technau A et al. Sp1 recognition sites in the proximal promoter of the human vascular endothelial growth factor gene are essential for platelet-derived growth factorinduced gene expression. Oncogene 1997; 15: 669–76.

    Article  PubMed  CAS  Google Scholar 

  32. Toi M, Inada K, Hoshina S et al. Vascular endothelial growth factor and platelet-derived endothelial cell growth factor are frequently coexpressed in highly vascularized human breast cancer. Clin Cancer Res 1995; 1: 961–4.

    PubMed  CAS  Google Scholar 

  33. Sivridis E, Giatromanolaki A, Anastasiadis P et al. Angiogenic cooperation of VEGF and stromal cell TP in endometrial carcinomas. J Pathol 2002; 196: 416–22.

    Article  PubMed  CAS  Google Scholar 

  34. Kaio E, Tanaka S, Kitadai Y et al. Clinical significance of angiogenic factor expression at the deepest invasive site of advanced colorectal carcinoma. Oncology 2003; 64: 61–73.

    Article  PubMed  CAS  Google Scholar 

  35. Toi M, Gion M, Biganzoli E et al. Co-determination of the angiogenic factors thymidine phosphorylase and vascular endothelial growth factor in node negative breast cancer: Prognostic implications. Angiogenesis 1997; 1: 71–83.

    Article  PubMed  CAS  Google Scholar 

  36. Maeda K, Kang SM, Ogawa M et al. Combined analysis of vascular endothelial growth factor and platelet-derived endothelial cell growth factor expression in gastric carcinoma. Int J Cancer 1997; 74: 545–50.

    Article  PubMed  CAS  Google Scholar 

  37. Usuki K, Heldin NE, Miyazono K et al. Production of plateletderived endothelial cell growth factor by normal and transformed human cells in culture. Proc Natl Acad Sci USA 1989; 86: 7427–31.

    Article  PubMed  CAS  Google Scholar 

  38. Matsukawa K, Moriyama A, Kawai Y et al. Tissue distribution of human gliostatin/platelet-derived endothelial cell growth factor (PD-ECGF) and its drug-induced expression. Biochim Biophys Acta 1996; 1314: 71–82.

    Article  PubMed  Google Scholar 

  39. Waguri Y, Otsuka T, Sugimura I et al. Gliostatin/platelet-derived endothelial cell growth factor as a clinical marker of rheumatoid arthritis and its regulation in fibroblast-like synoviocytes. Br J Rheumatol 1997; 36: 315–21.

    Article  PubMed  CAS  Google Scholar 

  40. Usuki K, Miyazono K, Heldin CH. Covalent linkage between nucleotides and platelet-derived endothelial cell growth factor. J Biol Chem 1991; 266: 20525–31.

    PubMed  CAS  Google Scholar 

  41. Furukawa T, Yoshimura A, Sumizawa T et al. Angiogenic factor. Nature 1992; 356: 668.

    Article  PubMed  CAS  Google Scholar 

  42. Miyadera K, Sumizawa T, Haraguchi M et al. Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res 1995; 55: 1687–90.

    PubMed  CAS  Google Scholar 

  43. Brown NS, Jones A, Fujiyama C et al. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res 2000; 60: 6298–302.

    PubMed  CAS  Google Scholar 

  44. Brown NS, Bicknell R. Thymidine Phosphorylase, 2 Deoxy-DRibose and Angiogenesis. Biochem J 1998; 334: 1–8.

    PubMed  CAS  Google Scholar 

  45. Matsushita S, Nitanda T, Furukawa T et al. The effect of a thymidine phosphorylase inhibitor on angiogenesis and apoptosis in tumors. Cancer Res 1999; 59: 1911–6.

    PubMed  CAS  Google Scholar 

  46. Uchimiya H, Furukawa T, Okamoto M et al. Suppression of thymidine phosphorylase-mediated angiogenesis and tumor growth by 2-deoxy-L-ribose. Cancer Res 2002; 62: 2834–9.

    PubMed  CAS  Google Scholar 

  47. Mori S, Takao S, Ikeda R et al. Thymidine phosphorylase suppresses Fas-induced apoptotic signal transduction independent of its enzymatic activity. Biochem Biophys Res Commun 2002; 295: 300–5.

    Article  PubMed  CAS  Google Scholar 

  48. Ikeda R, Furukawa T, Kitazono M et al. Molecular basis for the inhibition of hypoxia-induced apoptosis by 2-deoxy-D-ribose. Biochem Biophys Res Commun 2002; 291: 806–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geke A.P. Hospers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouïs, D., Boelens, M.C., Peters, E. et al. Combination of Vascular Endothelial Growth Factor (VEGF) and Thymidine Phosphorylase (TP) to Improve Angiogenic Gene Therapy. Angiogenesis 6, 185–192 (2003). https://doi.org/10.1023/B:AGEN.0000021389.49659.31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGEN.0000021389.49659.31

Navigation