Skip to main content
Log in

Investigating Tendon Fascicle Structure–Function Relationships in a Transgenic-Age Mouse Model Using Multiple Regression Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Proper replacement or repair of damaged tendons or ligaments requires functionally engineered tissue that mimics their native mechanical properties. While tendon structure–function relationships are generally assumed, there exists little quantitative evidence of the roles of distinct tendon components in tendon function. Previous work has used linear correlations to assess the independent, univariate effects of one structural or one biochemical variable on mechanics. The current study's objective was to simultaneously and rigorously evaluate the relative contributions of seven different structural and compositional variables in predicting tissue mechanical properties through the use of multiple regression statistical models. Structural, biochemical, and mechanical analysis were all performed on tail tendon fascicles from different groups of transgenic mice, which provide a reproducible, noninvasive, in vivo model of changes in tendon structure and composition. Interestingly, glycosaminoglycan (GAG) content was observed to be the strongest predictor of mechanical properties. GAG content was also well correlated with collagen content and mean collagen fibril diameter. Collagen fibril area fraction was a significant predictor only of material properties. Therefore, in a large multivariate model, GAG content was the largest predictor of mechanical properties, perhaps both through direct influence and indirectly through its correlation with collagen content and fibril structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ault, H. K., and A. H. Hoffman. A composite micromechanical model for connective tissues: Part 1—Theory. J.Biomech.Eng. 114:137–141, 1992.

    Google Scholar 

  2. Birk, D. E., F. H. Silver, and R. L. Trelstad. Matrix Assembly. In: Cell Biology of the Extracellular Matrix, edited by E. D. Hay. New York: Plenum, 1991, pp. 221–254.

    Google Scholar 

  3. Blevins, F. T., M. Djurasovic, E. L. Flatow, and K. G. Vogel. Biology of the rotator cuff tendon. Orthop.Clin.North Am. 28:1–16, 1997.

    Google Scholar 

  4. Bonadio, J., T. L. Saunders, E. Tsai, S. A. Goldstein, J. Morris-Wiman, L. Brinkley, D. F. Dolan, R. A. Altschuler, J. E. Hawkins Jr., and J. F. Bateman. Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc.Natl.Acad.Sci.U.S.A. 87:7145–7149, 1990.

    Google Scholar 

  5. Calabro, A., V. C. Hascall, and R. J. Midura. Adaptation of FACE methodology for microanalysis of total hyaluronan and chondroitin sulfate composition from cartilage. Glycobiology 10:283–293, 2000.

    Google Scholar 

  6. Christiansen, D. L., E. K. Huang, and F. H. Silver. Assembly of type I collagen: Fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19:409–420, 2000.

    Google Scholar 

  7. Craig, A. S., M. J. Birtles, J. F. Conway, and D. A. Parry. An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age. Connect.Tissue Res. 19:51–62, 1989.

    Google Scholar 

  8. Danielson, K. G., H. Baribault, D. F. Holmes, H. Graham, K. E. Kadler, and R. V. Iozzo. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J.Cell Biol. 136:729–743, 1997.

    Google Scholar 

  9. Derwin, K. A., and L. J. Soslowsky. A quantitative investigation of structure–function relationships in a tendon fascicle model. J.Biomech.Eng. 121:598–604, 1999.

    Google Scholar 

  10. Derwin, K. A., L. J. Soslowsky, J. H. Kimura, and A. H. Plaas. Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle. J.Orthop.Res. 19:269–277, 2001.

    Google Scholar 

  11. Devore, J. L. Probability and Statistics for Engineering and the Sciences. Belmont, CA: Duxbury Press, 1991.

    Google Scholar 

  12. Flint, M. H., A. S. Craig, H. C. Reilly, G. C. Gillard, and D. A. Parry. Collagen fibril diameters and glycosaminoglycan con-tent of skins—indices of tissue maturity and function. Connect.Tissue Res. 13:69–81, 1984.

    Google Scholar 

  13. Haut, R. C. The effect of a lathyritic diet on the sensitiv-ity of tendon to strain rate. J.Biomech.Eng. 107:166–174, 1985.

    Google Scholar 

  14. Haut, R. C., R. L. Lancaster, and C. E. DeCamp. Mechanical properties of the canine patellar tendon: Some correlations with age and content of collagen. J.Biomech. 25:163–173, 1992.

    Google Scholar 

  15. Kastellic, J., I. Palley, and E. Baer. A structural model for tendon crimping. J.Biomech. 13:887–893, 1980.

    Google Scholar 

  16. Lin, T. W., P. S. Robinson, P. R. Reynolds, K. A. Derwin, K. G. Danielson, R. V. Iozzo, and L. J. Soslowsky. Quantified structure–function relationships in tendon using transgenic mouse models. Trans.Orthop.Res. 26:698, 2001.

    Google Scholar 

  17. Lin, T. W., S. M. White, P. S. Robinson, K. A. Derwin, A. H. Plaas, R. V. Iozzo, and L. J. Soslowsky. Relating ex-tracellular matrix composition with function—a study using transgenic mouse tail fendon fascicles. Trans.Orthop.Res. 27:45, 2002.

    Google Scholar 

  18. Liu, X., H. Wu, M. Byrne, J. Jeffrey, S. Krane, and R. Jaenisch. A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. Cell Biol. 130:227–237, 1995.

    Google Scholar 

  19. McBride, D. J., Jr., R. L. Trelstad, and F. H. Silver. Structural and mechanical assessment of developing chick tendon. Int.J.Biol.Macromol. 10:194–200, 1988.

    Google Scholar 

  20. Mikic, B., B. J. Schalet, R. T. Clark, V. Gaschen, and E. B. Hunziker. GDF-5 deficiency in mice alters the ultrastructure, mechanical properties and composition of the Achilles tendon. J.Orthop.Res. 19:365–371, 2001.

    Google Scholar 

  21. Parry, D. A. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys.Chem. 29:195–209, 1988.

    Google Scholar 

  22. Parry, D. A., and A. S. Craig. Quantitative electron micro-scope observations of the collagen fibrils in rat-tail tendon. Biopolymers 16:1015–1031, 1977.

    Google Scholar 

  23. Pins, G. D., D. L. Christiansen, R. Patel, and F. H. Silver. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys.J. 73:2164–2172, 1997.

    Google Scholar 

  24. Scott, J. E. Proteoglycan-fibrillar collagen interactions. Biochem.J. 252:313–323, 1988.

    Google Scholar 

  25. Stegemann, H., and K. Stalder. Determination of Hydroxyproline. Clinica Chimica Acta 18:267–273, 1967.

    Google Scholar 

  26. Trotter, J. A., and T. J. Koob. Collagen and proteoglycan in a sea urchin ligament with mutable mechanical properties. Cell Tissue Res. 258:527–539, 1989.

    Google Scholar 

  27. Vogel, K. G., and D. Heinegard. Characterization of proteogly-cans from adult bovine tendon. J.Biol.Chem. 260:9298–9306, 1985.

    Google Scholar 

  28. Woo, S. L. Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties. Biorheology 19:385–396, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, P.S., Lin, T.W., Jawad, A.F. et al. Investigating Tendon Fascicle Structure–Function Relationships in a Transgenic-Age Mouse Model Using Multiple Regression Models. Annals of Biomedical Engineering 32, 924–931 (2004). https://doi.org/10.1023/B:ABME.0000032455.78459.56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000032455.78459.56

Navigation