Skip to main content

Mechanical Properties of the Aging Tendon

  • Chapter
  • First Online:
Mechanical Properties of Aging Soft Tissues

Abstract

Among the connective tissues, tendons are probably some of the simplest in terms of structure and function. The function of tendon is basically that of a rope transmitting uniaxial force from muscles across joints to generate movement. Tendons can often experience large loads with many repetitions, which may be part of the reason why they are common sites of injury in relation to sports and overuse. When injured, tendons are not very good at regenerating, and this property may also be involved in the increased prevalence of tendon injury with age that has been observed. This chapter provides an introduction to tendon composition and mechanical properties and proceeds to present our current knowledge of how these are affected by aging. While quite a few studies exist within this area, the variations in tendon types, species, and age range as well as methodology provide a mixed message. In spite of contradictory findings, the overall image appears to be that tendons experience a loss of load-bearing material, mechanical stiffness , and strength with old age. These changes relate well to the increased injury risk but the mechanisms are poorly understood. For example the concentration of glycation cross-links increase with age and would be expected to increase rather than reduce connective tissue stiffness. Further research is therefore warranted, especially at a mechanistic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Advanced glycation end-product

CSA:

Cross-sectional area

ECM:

Extracellular matrix

MMP:

Matrix metalloproteinase

MVC:

Maximum voluntary contraction

References

  1. Creditor MC (1993) Hazards of hospitalization of the elderly. Ann Intern Med 118(3):219–223

    Google Scholar 

  2. Murrell GA, Walton JR (2001) Diagnosis of rotator cuff tears. Lancet 357(9258):769–770. doi:10.1016/S0140-6736(00)04161-1

    Google Scholar 

  3. Narici MV, Maganaris CN (2007) Plasticity of the muscle-tendon complex with disuse and aging. Exerc Sport Sci Rev 35(3):126–134

    Google Scholar 

  4. Dressler MR, Butler DL, Wenstrup R, Awad HA, Smith F, Boivin GP (2002) A potential mechanism for age-related declines in patellar tendon biomechanics. J Orthop Res 20(6):1315–1322

    Google Scholar 

  5. Exposito JY, Valcourt U, Cluzel C, Lethias C (2010) The Fibrillar collagen family. Int J Mol Sci 11(2):407–426. doi:10.3390/Ijms11020407

    Google Scholar 

  6. Gelse K, Poschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Del Rev 55(12):1531–1546

    Google Scholar 

  7. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84(2):649–698. doi:10.1152/physrev.00031.2003

    Google Scholar 

  8. Kongsgaard M, Kovanen V, Aagaard P, Doessing S, Hansen P, Laursen AH, Kaldau NC, Kjaer M, Magnusson SP (2009) Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy. Scand J Med Sci Sports. doi:SMS949, 10.1111/j.1600-0838.2009.00949.x

  9. Koob TJ, Vogel KG (1987) Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. J Orthop Res 5(3):414–424

    Google Scholar 

  10. Suzuki D, Takahashi M, Abe M, Nagano A (2008) Biochemical study of collagen and its crosslinks in the anterior cruciate ligament and the tissues used as a graft for reconstruction of the anterior cruciate ligament. Connect Tissue Res 49(1):42–47. doi:10.1080/03008200701820799

    Google Scholar 

  11. Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202(3):229–243

    Google Scholar 

  12. Craig AS, Birtles MJ, Conway JF, Parry DAD (1989) An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age. Connect Tissue Res 19(1):51–62

    Google Scholar 

  13. Holmes DF, Graham HK, Trotter JA, Kadler KE (2001) STEM/TEM studies of collagen fibril assembly. Micron 32(3):273–285

    Google Scholar 

  14. Holmes DF, Kadler KE (2005) The precision of lateral size control in the assembly of corneal collagen fibrils. J Mol Biol 345(4):773–784. doi:10.1016/j.jmb.2004.10.078

    Google Scholar 

  15. Provenzano PP, Vanderby R (2006) Collagen fibril morphology and organization: Implications for force transmission in ligament and tendon. Matrix Biol 25(2):71–84

    Google Scholar 

  16. Diamant J, Arridge RGC, Baer E, Litt M, Keller A (1972) Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc R Soc Lond B Biol Sci 180(1060):293–315

    Google Scholar 

  17. Franchi M, Ottani V, Stagni R, Ruggeri A (2010) Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. J Anat 216(3):301–309. doi:10.1111/j.1469-7580.2009.01188.x

    Google Scholar 

  18. Stouffer DC, Butler DL, Hosny D (1985) The relationship between crimp pattern and mechanical response of human patellar tendon-bone units. J Biomech Eng 107(2):158–165

    Google Scholar 

  19. Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1(3):257–265. doi:10.1002/jor.1100010305

    Google Scholar 

  20. Duance VC, Restall DJ, Beard H, Bourne FJ, Bailey AJ (1977) The location of three collagen types in skeletal muscle. FEBS Lett 79(2):248–252

    Google Scholar 

  21. Williams IF, Mccullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12(3–4):211–227. doi:10.3109/03008208409013684

    Google Scholar 

  22. Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279(51):53331–53337. doi:10.1074/jbc.M409622200

    Google Scholar 

  23. Wenstrup RJ, Smith SM, Florer JB, Zhang GY, Beason DP, Seegmiller RE, Soslowsky LJ, Birk DE (2011) Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J Biol Chem 286(23):20455–20465. doi:10.1074/jbc.M111.223693

    Google Scholar 

  24. Grant TM, Thompson MS, Urban J, Yu J (2013) Elastic fibres are broadly distributed in tendon and highly localized around tenocytes. J Anat 222(6):573–579. doi:10.1111/joa.12048

    Google Scholar 

  25. Parry DAD, Craig AS (1978) Collagen fibrils and elastic fibers in rat-tail tendon: an electron microscopic investigation. Biopolymers 17(4):843–845. doi:10.1002/bip.1978.360170404

    Google Scholar 

  26. Fessel G, Snedeker JG (2009) Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon. Matrix Biol 28(8):503–510. doi:S0945-053X(09)00106-1, 10.1016/j.matbio.2009.08.002

  27. Yoon JH, Halper J (2005) Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuron Interact 5(1):22–34

    Google Scholar 

  28. Gillard GC, Merrilees MJ, Bell-Booth PG, Reilly HC, Flint MH (1977) The proteoglycan content and the axial periodicity of collagen in tendon. Biochem J 163(1):145–151

    Google Scholar 

  29. Merrilees MJ, Flint MH (1980) ultrastructural study of tension and pressure zones in a rabbit flexor tendon. Am J Anat 157(1):87–106

    Google Scholar 

  30. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Google Scholar 

  31. Raspanti M, Viola M, Sonaggere M, Tira ME, Tenni R (2007) Collagen fibril structure is affected by collagen concentration and decorin. Biomacromolecules 8(7):2087–2091. doi:10.1021/Bm070091t

    Google Scholar 

  32. Vogel KG, Trotter JA (1987) The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll Relat Res 7(2):105–114

    Google Scholar 

  33. Ippolito E, Natali PG, Postacchini F, Accinni L, De Martino C (1980) Morphological, immunochemical, and biochemical study of rabbit achilles tendon at various ages. J Bone Joint Surg Am 62(4):583–598

    Google Scholar 

  34. Screen HRC, Bader DL, Lee DA, Shelton JC (2004) Local strain measurement within tendon. Strain 40(4):157–163

    Google Scholar 

  35. Canty EG, Lu YH, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165(4):553–563. doi:10.1083/jcb.200312071

    Google Scholar 

  36. Humphries SM, Lu YH, Canty EG, Kadler KE (2008) Active negative control of collagen fibrillogenesis in vivo—intracellular cleavage of the type I procollagen propeptides in tendon fibroblasts without intracellular fibrils. J Biol Chem 283(18):12129–12135. doi:10.1074/jbc.M708198200

    Google Scholar 

  37. Landi AP, Altman FP, Pringel J, Landi A (1980) Oxidative enzyme metabolism in rabbit intrasynovial flexor tendons. I. Changes in enzyme activity of the tenocytes with age. J Surg Res 29(3):276–280

    Google Scholar 

  38. Bailey AJ, Paul RG, Knott L (1998) Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 106(1–2):1–56

    Google Scholar 

  39. Hanson DA, Eyre DR (1996) Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J Biol Chem 271(43):26508–26516

    Google Scholar 

  40. Eyre DR, Koob TJ, Vanness KP (1984) Quantitation of hydroxypyridinium crosslinks in collagen by high-performance liquid-chromatography. Anal Biochem 137(2):380–388

    Google Scholar 

  41. Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–748

    Google Scholar 

  42. Bailey AJ, Shimokomaki MS (1971) Age related changes in reducible cross-links of collagen. FEBS Lett 16(2):86–88

    Google Scholar 

  43. Cannon DJ, Davison PF (1973) Crosslinking and aging in rat tendon collagen. Exp Gerontol 8(1):51–62

    Google Scholar 

  44. Light ND, Bailey AJ (1979) Changes in crosslinking during aging in bovine tendon collagen. FEBS Lett 97(1):183–188

    Google Scholar 

  45. Davison PF (1989) The contribution of labile crosslinks to the tensile behavior of tendons. Connect Tissue Res 18(4):293–305

    Google Scholar 

  46. Svensson RB, Mulder H, Kovanen V, Magnusson SP (2013) Fracture mechanics of collagen fibrils: influence of natural cross-links. Biophys J 104(11):2476–2484. doi:10.1016/j.bpj.2013.04.033

    Google Scholar 

  47. Avery NC, Bailey AJ (2005) Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand J Med Sci Sports 15(4):231–240. doi:10.1111/j.1600-0838.2005.00464.x

    Google Scholar 

  48. Maillard LC (1912) Action des acides aminés sur les sucres: formation des mélanoïdines par voie méthodique. Compte-rendu de l’Académie des sciences 154:66–68

    Google Scholar 

  49. Monnier VM (1989) Toward a Maillard reaction theory of aging. Prog Clin Biol Res 304:1–22

    Google Scholar 

  50. Tanaka S, Avigad G, Eikenberry EF, Brodsky B (1988) Isolation and partial characterization of collagen chains dimerized by sugar-derived cross-links. J Biol Chem 263(33):17650–17657

    Google Scholar 

  51. Bank RA, TeKoppele JM, Oostingh G, Hazleman BL, Riley GP (1999) Lysylhydroxylation and non-reducible crosslinking of human supraspinatus tendon collagen: changes with age and in chronic rotator cuff tendinitis. Ann Rheum Dis 58(1):35–41

    Google Scholar 

  52. Chen JR, Takahashi M, Kushida K, Suzuki M, Suzuki K, Horiuchi K, Nagano A (2000) Direct detection of crosslinks of collagen and elastin in the hydrolysates of human yellow ligament using single-column high performance liquid chromatography. Anal Biochem 278(2):99–105

    Google Scholar 

  53. Verzijl N, DeGroot J, Oldehinkel E, Bank RA, Thorpe SR, Baynes JW, Bayliss MT, Bijlsma JW, Lafeber FP, TeKoppele JM (2000) Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 350(Pt 2):381–387

    Google Scholar 

  54. Haus JM, Carrithers JA, Trappe SW, Trappe TA (2007) Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol 103(6):2068–2076

    Google Scholar 

  55. DeGroot J, Verzijl N, Jacobs KM, Budde M, Bank RA, Bijlsma JW, TeKoppele JM, Lafeber FP (2001) Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthr Cartil 9(8):720–726

    Google Scholar 

  56. Sell DR, Biemel KM, Reihl O, Lederer MO, Strauch CM, Monnier VM (2005) Glucosepane is a major protein cross-link of the senescent human extracellular matrix relationship with diabetes. J Biol Chem 280(13):12310–12315. doi:10.1074/jbc.M500733200

    Google Scholar 

  57. Bailey AJ, Sims TJ, Avery NC, Halligan EP (1995) Non-enzymatic glycation of fibrous collagen: reaction products of glucose and ribose. Biochem J 305:385–390

    Google Scholar 

  58. Monnier VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211(4481):491–493

    Google Scholar 

  59. Sell DR, Nagaraj RH, Grandhee SK, Odetti P, Lapolla A, Fogarty J, Monnier VM (1991) Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diab Metab Rev 7(4):239–251

    Google Scholar 

  60. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83(11):876–886. doi:10.1007/s00109-005-0688-7

    Google Scholar 

  61. Brownlee M (2000) Negative consequences of glycation. Metab Clin Exp 49(2):9–13

    Google Scholar 

  62. Bai P, Phua K, Hardt T, Cernadas M, Brodsky B (1992) Glycation alters collagen fibril organization. Connect Tissue Res 28(1–2):1–12

    Google Scholar 

  63. Li Y, Fessel G, Georgiadis M, Snedeker JG (2013) Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol 32(3–4):169–177. doi:10.1016/j.matbio.2013.01.003

    Google Scholar 

  64. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234

    Google Scholar 

  65. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, Baynes JW (1993) Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91(6):2463–2469

    Google Scholar 

  66. Monnier VM, Kohn RR, Cerami A (1984) Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci USA 81(2):583–587

    Google Scholar 

  67. Bierhaus A, Fleming T, Stoyanov S, Leffler A, Babes A, Neacsu C, Sauer SK, Eberhardt M, Schnolzer M, Lasitschka F, Neuhuber WL, Kichko TI, Konrade I, Elvert R, Mier W, Pirags V, Lukic IK, Morcos M, Dehmer T, Rabbani N, Thornalley PJ, Edelstein D, Nau C, Forbes J, Humpert PM, Schwaninger M, Ziegler D, Stern DM, Cooper ME, Haberkorn U, Brownlee M, Reeh PW, Nawroth PP (2012) Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med 18(6):926–933. doi:10.1038/nm.2750

    Google Scholar 

  68. Falcao-Pires I, Hamdani N, Borbely A, Gavina C, Schalkwijk CG, van der Velden J, van Heerebeek L, Stienen GJM, Niessen HWM, Leite-Moreira AF, Paulus WJ (2011) Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation 124(10):1151–1159. doi:10.1161/CIRCULATIONAHA.111.025270

    Google Scholar 

  69. Vogt BW, Schleicher ED, Wieland OH (1982) Epsilon-amino-lysine-bound glucose in human tissues obtained at autopsy. Increase in diabetes mellitus. Diabetes 31(12):1123–1127

    Google Scholar 

  70. Meerwaldt R, Graaff R, Oomen PHN, Links TP, Jager JJ, Alderson NL, Thorpe SR, Baynes JW, Gans ROB, Smit AJ (2004) Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 47(7):1324–1330. doi:10.1007/s00125-004-1451-2

    Google Scholar 

  71. Lynch HA, Johannessen W, Wu JP, Jawa A, Elliott DM (2003) Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J Biomech Eng 125(5):726–731

    Google Scholar 

  72. Gathercole LJ, Keller A (1991) Crimp morphology in the fibre-forming collagens. Matrix 11(3):214–234

    Google Scholar 

  73. Franchi M, Fini M, Quaranta M, De Pasquale V, Raspanti M, Giavaresi G, Ottani V, Ruggeri A (2007) Crimp morphology in relaxed and stretched rat Achilles tendon. J Anat 210(1):1–7. doi:10.1111/j.1469-7580.2006.00666.x

    Google Scholar 

  74. Hansen KA, Weiss JA, Barton JK (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124(1):72–77. doi:10.1115/1.1427698

    Google Scholar 

  75. Kastelic J, Palley I, Baer E (1980) A structural mechanical model for tendon crimping. J Biomech 13(10):887–893

    Google Scholar 

  76. Ker RF, Wang XT, Pike AVL (2000) Fatigue quality of mammalian tendons. J Exp Biol 203(8):1317–1327

    Google Scholar 

  77. Thornton GM, Schwab TD, Oxland TR (2007) Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength. Ann Biomed Eng 35(10):1713–1721. doi:10.1007/s10439-007-9349-z

    Google Scholar 

  78. Hiltner A, Cassidy JJ, Baer E (1985) Mechanical properties of biological polymers. Annu Rev Mater Sci 15:455–482

    Google Scholar 

  79. Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, Bernstorff S, Purslow P, Fratzl P (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos Trans R Soc Lond B Biol Sci 357(1418):191–197

    Google Scholar 

  80. Wang XT, Ker RF (1995) Creep rupture of wallaby tail tendons. J Exp Biol 198(Pt 3):831–845

    Google Scholar 

  81. Screen HR, Toorani S, Shelton JC (2013) Microstructural stress relaxation mechanics in functionally different tendons. Med Eng Phys 35(1):96–102. doi:10.1016/j.medengphy.2012.04.004

    Google Scholar 

  82. Ker RF (1981) Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J Exp Biol 93:283–302

    Google Scholar 

  83. Theis N, Mohagheghi AA, Korff T (2012) Method and strain rate dependence of Achilles tendon stiffness. J Electromyogr Kinesiol 22(6):947–953. doi:10.1016/j.jelekin.2012.06.004

    Google Scholar 

  84. Gautieri A, Buehler MJ, Redaelli A (2009) Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. J Mech Behav Biomed Mater 2(2):130–137. doi:10.1016/j.jmbbm.2008.03.001

    Google Scholar 

  85. Gupta HS, Seto J, Krauss S, Boesecke P, Screen HRC (2010) In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J Struct Biol 169(2):183–191. doi:10.1016/j.jsb.2009.10.002

    Google Scholar 

  86. Shen ZLL, Kahn H, Ballarin R, Eppell SJ (2011) Viscoelastic properties of isolated collagen fibrils. Biophys J 100(12):3008–3015. doi:10.1016/j.bpj.2011.04.052

    Google Scholar 

  87. Svensson RB, Hassenkam T, Hansen P, Magnusson SP (2010) Viscoelastic behavior of discrete human collagen fibrils. J Mech Behav Biomed Mater 3(1):112–115. doi:S1751-6161(09)00018-6, 10.1016/j/jmbbm.2009.01.005

  88. Reese SP, Weiss JA (2013) Tendon fascicles exhibit a linear correlation between poisson’s ratio and force during uniaxial stress relaxation. J Biomech Eng 135(3):34501. doi:10.1115/1.4023134

    Google Scholar 

  89. Arumugam V, Naresh MD, Somanathan N, Sanjeevi R (1992) Effect of strain rate on the fracture behaviour of collagen. J Mater Sci 27(10):2649–2652. doi:10.1007/bf00540684

    Google Scholar 

  90. Grant CA, Brockwell DJ, Radford SE, Thomson NH (2008) Effects of hydration on the mechanical response of individual collagen fibrils. Appl Phys Lett 92(23):3902. doi:Artn 233902, 10.1063/1.2937001

  91. Shadwick RE (1990) Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol 68(3):1033–1040

    Google Scholar 

  92. Thorpe CT, Klemt C, Riley GP, Birch HL, Clegg PD, Screen HR (2013) Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return. Acta Biomater 9(8):7948–7956. doi:10.1016/j.actbio.2013.05.004

    Google Scholar 

  93. Bennett MB, Ker RF, Dimery NJ, Alexander RM (1986) Mechanical properties of various mammalian tendons. J Zool 209:537–548

    Google Scholar 

  94. Anssari-Benam A, Legerlotz K, Bader DL, Screen HRC (2012) On the specimen length dependency of tensile mechanical properties in soft tissues: Gripping effects and the characteristic decay length. J Biomech 45(14):2481–2482. doi:10.1016/j.jbiomech.2012.07.016

    Google Scholar 

  95. Atkinson TS, Ewers BJ, Haut RC (1999) The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J Biomech 32(9):907–914

    Google Scholar 

  96. Ng BH, Chou SM, Krishna V (2005) The influence of gripping techniques on the tensile properties of tendons. Proc Inst Mech Eng Part H-J Eng Med 219(H5):349–354. doi:10.1243/095441105x34239

    Google Scholar 

  97. Lu HH, Thomopoulos S (2013) Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 15:201–226. doi:10.1146/annurev-bioeng-071910-124656

    Google Scholar 

  98. Butler DL, Grood ES, Noyes FR, Zernicke RF, Brackett K (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 17(8):579–596

    Google Scholar 

  99. Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HRC (2012) Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface 9(76):3108–3117. doi:10.1098/rsif.2012.0362

    Google Scholar 

  100. Yamamoto E, Hayashi K, Yamamoto N (1999) Mechanical properties of collagen fascicles from the rabbit patellar tendon. J Biomech Eng 121(1):124–131

    Google Scholar 

  101. Hansen P, Kovanen V, Holmich P, Krogsgaard M, Hansson P, Dahl M, Hald M, Aagaard P, Kjaer M, Magnusson SP (2013) Micromechanical properties and collagen composition of ruptured human achilles tendon. Am J Sports Med 41(2):437–443. doi:10.1177/0363546512470617

    Google Scholar 

  102. Legerlotz K, Riley GP, Screen HRC (2013) GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery. Acta Biomater 9(6):6860–6866. doi:10.1016/j.actbio.2013.02.028

    Google Scholar 

  103. Eppell SJ, Smith BN, Kahn H, Ballarini R (2006) Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J R Soc Interface 3(6):117–121

    Google Scholar 

  104. Sun YL, Luo ZP, Fertala A, An KN (2002) Direct quantification of the flexibility of type I collagen monomer. Biochem Biophys Res Commun 295(2):382–386

    Google Scholar 

  105. van der Rijt JAJ, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6(9):697–702

    Google Scholar 

  106. Kemp AD, Harding CC, Cabral WA, Marini JC, Wallace JM (2012) Effects of tissue hydration on nanoscale structural morphology and mechanics of individual type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol 180(3):428–438. doi:10.1016/j.jsb.2012.09.012

    Google Scholar 

  107. Cronkite AE (1936) The tensile strength of human tendons. Anat Rec 64(2):173–186. doi:10.1002/ar.1090640205

    Google Scholar 

  108. Hansen P, Bojsen-Moller J, Aagaard P, Kjaer M, Magnusson SP (2006) Mechanical properties of the human patellar tendon, in vivo. Clin Biomech (Bristol, Avon) 21(1):54–58. doi:10.1016/j.clinbiomech.2005.07.008

  109. Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol (Lond) 521(1):307–313

    Google Scholar 

  110. Schepull T, Kvist J, Andersson C, Aspenberg P (2007) Mechanical properties during healing of Achilles tendon ruptures to predict final outcome: a pilot Roentgen stereophotogrammetric analysis in 10 patients. BMC Musculoskelet Disord 8:116. doi:10.1186/1471-2474-8-116

    Google Scholar 

  111. An KN, Takahashi K, Harrigan TP, Chao EY (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106(3):280–282

    Google Scholar 

  112. Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Bojsen-Moller F, Dyhre-Poulsen P (2000) Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 10(2):58–67

    Google Scholar 

  113. Kubo K, Kanehisa H, Miyatani M, Tachi M, Fukunaga T (2003) Effect of low-load resistance training on the tendon properties in middle-aged and elderly women. Acta Physiol Scand 178(1):25–32. doi:10.1046/j.1365-201X.2003.01097.x

    Google Scholar 

  114. Arndt A, Bengtsson AS, Peolsson M, Thorstensson A, Movin T (2012) Non-uniform displacement within the Achilles tendon during passive ankle joint motion. Knee Surg Sports Traumatol Arthrosc 20(9):1868–1874. doi:10.1007/s00167-011-1801-9

    Google Scholar 

  115. Korstanje JW, Selles RW, Stam HJ, Hovius SE, Bosch JG (2010) Development and validation of ultrasound speckle tracking to quantify tendon displacement. J Biomech 43(7):1373–1379. doi:10.1016/j.jbiomech.2010.01.001

    Google Scholar 

  116. Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51(4):396–409

    Google Scholar 

  117. Kot BC, Zhang ZJ, Lee AW, Leung VY, Fu SN (2012) Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One 7(8):e44348. doi:10.1371/journal.pone.0044348

    Google Scholar 

  118. Zhang ZJ, Fu SN (2013) Shear elastic modulus on patellar tendon captured from supersonic shear imaging: correlation with tangent traction modulus computed from material testing system and test-retest reliability. PLoS One 8(6):e68216. doi:10.1371/journal.pone.0068216

    Google Scholar 

  119. Kubo K, Kanehisa H, Kawakami Y, Fukanaga T (2001) Growth changes in the elastic properties of human tendon structures. Int J Sports Med 22(2):138–143. doi:10.1055/s-2001-11337

    Google Scholar 

  120. O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2010) Mechanical properties of the patellar tendon in adults and children. J Biomech 43(6):1190–1195. doi:10.1016/j.jbiomech.2009.11.028

    Google Scholar 

  121. Waugh CM, Blazevich AJ, Fath F, Korff T (2012) Age-related changes in mechanical properties of the Achilles tendon. J Anat 220(2):144–155. doi:10.1111/j.1469-7580.2011.01461.x

    Google Scholar 

  122. Shadwick RE, Rapoport HS, Fenger JM (2002) Structure and function of tuna tail tendons. Comp Biochem Phys A 133(4):1109–1125

    Google Scholar 

  123. Sell DR, Lane MA, Johnson WA, Masoro EJ, Mock OB, Reiser KM, Fogarty JF, Cutler RG, Ingram DK, Roth GS, Monnier VM (1996) Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci USA 93(1):485–490

    Google Scholar 

  124. Monnier VM, Sell DR (2006) Prevention and repair of protein damage by the Maillard reaction in vivo. Rejuv Res 9(2):264–273

    Google Scholar 

  125. Nagy IZ, von Hahn HP, Verzar F (1969) Age-related alterations in the cell nuclei and the DNA content of rat tail tendon. Gerontologia 15(4):258–264

    Google Scholar 

  126. Nakagawa Y, Majima T, Nagashima K (1994) Effect of ageing on ultrastructure of slow and fast skeletal muscle tendon in rabbit Achilles tendons. Acta Physiol Scand 152(3):307–313

    Google Scholar 

  127. Squier CA, Magnes C (1983) Spatial relationships between fibroblasts during the growth of rat-tail tendon. Cell Tissue Res 234(1):17–29

    Google Scholar 

  128. Lavagnino M, Gardner K, Arnoczky SP (2013) Age-related changes in the cellular, mechanical, and contractile properties of rat tail tendons. Connect Tissue Res 54(1):70–75. doi:10.3109/03008207.2012.744973

    Google Scholar 

  129. Kalson NS, Starborg T, Lu Y, Mironov A, Humphries SM, Holmes DF, Kadler KE (2013) Nonmuscle myosin II powered transport of newly formed collagen fibrils at the plasma membrane. Proc Natl Acad Sci USA 110(49):E4743–E4752. doi:10.1073/pnas.1314348110

    Google Scholar 

  130. Bayer ML, Yeung CY, Kadler KE, Qvortrup K, Baar K, Svensson RB, Magnusson SP, Krogsgaard M, Koch M, Kjaer M (2010) The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension. Biomaterials 31(18):4889–4897. doi:S0142-9612(10)00325-X, 10.1016/j.biomaterials.2010.02.002

  131. Bayer ML, Schjerling P, Biskup E, Herchenhan A, Heinemeier KM, Doessing S, Krogsgaard M, Kjaer M (2012) No donor age effect of human serum on collagen synthesis signaling and cell proliferation of human tendon fibroblasts. Mech Ageing Dev 133(5):246–254. doi:10.1016/j.mad.2012.02.002

    Google Scholar 

  132. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13(10):1219–1227. doi:10.1038/nm1630

    Google Scholar 

  133. Ruzzini L, Abbruzzese F, Rainer A, Longo UG, Trombetta M, Maffulli N, Denaro V (2013) Characterization of age-related changes of tendon stem cells from adult human tendons. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2457-4

    Google Scholar 

  134. Zhou Z, Akinbiyi T, Xu L, Ramcharan M, Leong DJ, Ros SJ, Colvin AC, Schaffler MB, Majeska RJ, Flatow EL, Sun HB (2010) Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate. Aging Cell 9(5):911–915. doi:10.1111/j.1474-9726.2010.00598.x

    Google Scholar 

  135. Birch HL, McLaughlin L, Smith RK, Goodship AE (1999) Treadmill exercise-induced tendon hypertrophy: assessment of tendons with different mechanical functions. Equine Vet J Suppl 30:222–226

    Google Scholar 

  136. Magnusson SP, Beyer N, Abrahamsen H, Aagaard P, Neergaard K, Kjaer M (2003) Increased cross-sectional area and reduced tensile stress of the Achilles tendon in elderly compared with young women. J Gerontol A Biol Sci Med Sci 58(2):123–127

    Google Scholar 

  137. Nakagawa Y, Hayashi K, Yamamoto N, Nagashima K (1996) Age-related changes in biomechanical properties of the Achilles tendon in rabbits. Eur J Appl Physiol Occup Physiol 73(1–2):7–10

    Google Scholar 

  138. Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T (2012) Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol 113(10):1537–1544. doi:10.1152/japplphysiol.00782.2012

    Google Scholar 

  139. Carroll CC, Dickinson JM, Haus JM, Lee GA, Hollon CJ, Aagaard P, Magnusson SP, Trappe TA (2008) Influence of aging on the in vivo properties of human patellar tendon. J Appl Physiol 105(6):1907–1915. doi:10.1152/japplphysiol.00059.2008

    Google Scholar 

  140. Wood LK, Arruda EM, Brooks SV (2011) Regional stiffening with aging in tibialis anterior tendons of mice occurs independent of changes in collagen fibril morphology. J Appl Physiol 111(4):999–1006. doi:10.1152/japplphysiol.00460.2011

    Google Scholar 

  141. Onambele GL, Narici MV, Maganaris CN (2006) Calf muscle-tendon properties and postural balance in old age. J Appl Physiol 100(6):2048–2056. doi:10.1152/japplphysiol.01442.2005

    Google Scholar 

  142. Couppe C, Svensson RB, Grosset J-F, Kovanen V, Nielsen RH, Olsen MR, Larsen JO, Praet SFE, Skovgaard D, Hansen M, Aagaard P, Kjaer M, Magnusson SP (2014) Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. Age (Dordr) 36:9665. doi:10.1007/s11357-014-9665-9

  143. Patterson-Kane JC, Parry DA, Goodship AE, Firth EC (1997) Exercise modifies the age-related change in crimp pattern in the core region of the equine superficial digital flexor tendon. N Z Vet J 45(4):135–139. doi:10.1080/00480169.1997.36013

    Google Scholar 

  144. Shah JS, Palacios E, Palacios L (1982) Development of crimp morphology and cellular changes in chick tendons. Dev Biol 94(2):499–504

    Google Scholar 

  145. Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, Kjaer M, Magnusson SP (2009) Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol 107(3):880–886. doi:10.1152/japplphysiol.00291.2009

    Google Scholar 

  146. Haut RC, Lancaster RL, DeCamp CE (1992) Mechanical properties of the canine patellar tendon: some correlations with age and the content of collagen. J Biomech 25(2):163–173

    Google Scholar 

  147. Vogel HG (1978) Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in the rat. Connect Tissue Res 6(3):161–166

    Google Scholar 

  148. Thorpe CT, Streeter I, Pinchbeck GL, Goodship AE, Clegg PD, Birch HL (2010) Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J Biol Chem 285(21):15674–15681. doi:10.1074/jbc.M109.077503

    Google Scholar 

  149. Miles CA, Avery NC, Rodin VV, Bailey AJ (2005) The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol 346(2):551–556

    Google Scholar 

  150. James VJ, Delbridge L, McLennan SV, Yue DK (1991) Use of X-ray diffraction in study of human diabetic and aging collagen. Diabetes 40(3):391–394

    Google Scholar 

  151. Tanaka S, Avigad G, Brodsky B, Eikenberry EF (1988) Glycation induces expansion of the molecular packing of collagen. J Mol Biol 203(2):495–505

    Google Scholar 

  152. Naresh MD, Brodsky B (1992) X-ray diffraction studies on human tendon show age-related changes in collagen packing. Biochim Biophys Acta 1122(2):161–166

    Google Scholar 

  153. Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM (1992) Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta 1138(3):222–228

    Google Scholar 

  154. Goh KL, Holmes DF, Lu HY, Richardson S, Kadler KE, Purslow PP, Wess TJ (2008) Ageing changes in the tensile properties of tendons: Influence of collagen fibril volume fraction. J Biomech Eng 130(2). doi:Artn 021011, 10.1115/1.2898732

  155. Kostrominova TY, Brooks SV (2013) Age-related changes in structure and extracellular matrix protein expression levels in rat tendons. Age (Dordr) 35(6):2203–2214. doi:10.1007/s11357-013-9514-2

    Google Scholar 

  156. Vogel HG (1980) Influence of maturation and aging on mechanical and biochemical properties of connective tissue in rats. Mech Ageing Dev 14(3–4):283–292

    Google Scholar 

  157. Bojsen-Moller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P (2005) Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 99(3):986–994. doi:10.1152/japplphysiol.01305.2004

    Google Scholar 

  158. Magnusson SP, Narici MV, Maganaris CN, Kjaer M (2008) Human tendon behaviour and adaptation, in vivo. J Physiol (Lond) 586(1):71–81

    Google Scholar 

  159. Nordez A, Gallot T, Catheline S, Guevel A, Cornu C, Hug F (2009) Electromechanical delay revisited using very high frame rate ultrasound. J Appl Physiol 106(6):1970–1975

    Google Scholar 

  160. Nielsen HM, Skalicky M, Viidik A (1998) Influence of physical exercise on aging rats. III. Life-long exercise modifies the aging changes of the mechanical properties of limb muscle tendons. Mech Ageing Dev 100(3):243–260

    Google Scholar 

  161. Viidik A, Nielsen HM, Skalicky M (1996) Influence of physical exercise on aging rats: II. Life-long exercise delays aging of tail tendon collagen. Mech Ageing Dev 88(3):139–148

    Google Scholar 

  162. Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, Birk DE, Soslowsky LJ (2013) Decorin expression is important for age-related changes in tendon structure and mechanical properties. Matrix Biol 32(1):3–13. doi:10.1016/j.matbio.2012.11.005

    Google Scholar 

  163. LaCroix AS, Duenwald-Kuehl SE, Brickson S, Akins TL, Diffee G, Aiken J, Vanderby R Jr, Lakes RS (2013) Effect of age and exercise on the viscoelastic properties of rat tail tendon. Ann Biomed Eng 41(6):1120–1128. doi:10.1007/s10439-013-0796-4

    Google Scholar 

  164. Simonsen EB, Klitgaard H, Bojsen-Moller F (1995) The influence of strength training, swim training and ageing on the Achilles tendon and m. soleus of the rat. J Sports Sci 13(4):291–295. doi:10.1080/02640419508732242

    Google Scholar 

  165. Connizzo BK, Sarver JJ, Birk DE, Soslowsky LJ, Iozzo RV (2013) Effect of age and proteoglycan deficiency on collagen fiber re-alignment and mechanical properties in mouse supraspinatus tendon. J Biomech Eng 135(2):021019. doi:10.1115/1.4023234

    Google Scholar 

  166. Haut RC (1983) Age-dependent influence of strain rate on the tensile failure of rat-tail tendon. J Biomech Eng 105(3):296–299

    Google Scholar 

  167. Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4(6):624–630

    Google Scholar 

  168. Flahiff CM, Brooks AT, Hollis JM, Vander Schilden JL, Nicholas RW (1995) Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 23(3):354–358

    Google Scholar 

  169. Hubbard RP, Soutas-Little RW (1984) Mechanical properties of human tendon and their age dependence. J Biomech Eng 106(2):144–150

    Google Scholar 

  170. Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SLY (1994) Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 12(6):796–803

    Google Scholar 

  171. Kannus P, Jozsa L (1991) Histopathological changes preceding spontaneous rupture of a tendon—a controlled study of 891 patients. J Bone Joint Surg Am 73A(10):1507–1525

    Google Scholar 

  172. Kubo K, Ishida Y, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T (2007) Age-related differences in the force generation capabilities and tendon extensibilities of knee extensors and plantar flexors in men. J Gerontol A Biol Sci Med Sci 62(11):1252–1258

    Google Scholar 

  173. Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T (2007) Age-related differences in the properties of the plantar flexor muscles and tendons. Med Sci Sports Exerc 39(3):541–547. doi:10.1249/01.mss.0000247006.24965.74

    Google Scholar 

  174. Karamanidis K, Arampatzis A (2006) Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J Biomech 39(3):406–417

    Google Scholar 

  175. Mian OS, Thom JM, Ardigo LP, Minetti AE, Narici MV (2007) Gastrocnemius muscle-tendon behaviour during walking in young and older adults. Acta physiologica (Oxford, England) 189(1):57–65

    Google Scholar 

  176. Morse CI, Thom JM, Birch KM, Narici MV (2005) Tendon elongation influences the amplitude of interpolated doublets in the assessment of activation in elderly men. J Appl Physiol 98(1):221–226

    Google Scholar 

  177. Magnusson SP, Hansen M, Langberg H, Miller B, Haraldsson B, Westh EK, Koskinen S, Aagaard P, Kjaer M (2007) The adaptability of tendon to loading differs in men and women. Int J Exp Pathol 88(4):237–240

    Google Scholar 

  178. Hansen M, Couppe C, Hansen CS, Skovgaard D, Kovanen V, Larsen JO, Aagaard P, Magnusson SP, Kjaer M (2013) Impact of oral contraceptive use and menstrual phases on patellar tendon morphology, biochemical composition, and biomechanical properties in female athletes. J Appl Physiol 114(8):998–1008. doi:10.1152/japplphysiol.01255.2012

    Google Scholar 

  179. Hansen M, Kongsgaard M, Holm L, Skovgaard D, Magnusson SP, Qvortrup K, Larsen JO, Aagaard P, Dahl M, Serup A, Frystyk J, Flyvbjerg A, Langberg H, Kjaer M (2009) Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women. J Appl Physiol 106(4):1385–1393. doi:10.1152/japplphysiol.90935.2008

    Google Scholar 

  180. Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol (Lond) 534(Pt. 2):613–623

    Google Scholar 

  181. Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, Conti M, Cerretelli P (1996) Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand 157(2):175–186

    Google Scholar 

  182. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 59(2):204–208

    Google Scholar 

  183. Krahl H, Michaelis U, Pieper HG, Quack G, Montag M (1994) Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med 22(6):751–757

    Google Scholar 

  184. Arampatzis A, Karamanidis K, Albracht K (2007) Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol 210(Pt 15):2743–2753

    Google Scholar 

  185. Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M, Magnusson SP (2007) Region specific patellar tendon hypertrophy in humans following resistance training. Acta physiologica (Oxford, England) 191(2):111–121

    Google Scholar 

  186. Seynnes OR, Erskine RM, Maganaris CN, Longo S, Simoneau EM, Grosset JF, Narici MV (2009) Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol 107:523-530

    Google Scholar 

  187. Carroll CC, Dickinson JM, LeMoine JK, Haus JM, Weinheimer EM, Hollon CJ, Aagaard P, Magnusson SP, Trappe TA (2011) Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults. J Appl Physiol 111(2):508–515. doi:10.1152/japplphysiol.01348.2010

    Google Scholar 

  188. Reeves ND, Maganaris CN, Narici MV (2003) Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol (Lond) 548(3):971–981

    Google Scholar 

  189. Seynnes OR, Koesters A, Gimpl M, Reifberger A, Niederseer D, Niebauer J, Pirich C, Muller E, Narici MV (2011) Effect of alpine skiing training on tendon mechanical properties in older men and women. Scand J Med Sci Sports 21(Suppl 1):39–46. doi:10.1111/j.1600-0838.2011.01340.x

    Google Scholar 

  190. Bauman AE, Blair SN (2012) Everyone could enjoy the “survival advantage” of elite athletes. BMJ 345:e8338. doi:10.1136/bmj.e8338

    Google Scholar 

  191. Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L, Ortenblad N, Magnusson SP, Kjaer M, Aagaard P (2009) Effects of aging on human skeletal muscle after immobilisation and retraining. J Appl Physiol 107:1172-1180

    Google Scholar 

  192. de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV (2007) Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol (Lond) 583(Pt 3):1079–1091

    Google Scholar 

  193. Kubo K, Akima H, Kouzaki M, Ito M, Kawakami Y, Kanehisa H, Fukunaga T (2000) Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol 83(6):463–468

    Google Scholar 

  194. Matsumoto F, Trudel G, Uhthoff HK, Backman DS (2003) Mechanical effects of immobilization on the Achilles’ tendon. Arch Phys Med Rehabil 84(5):662–667

    Google Scholar 

  195. Rumian AP, Draper ER, Wallace AL, Goodship AE (2009) The influence of the mechanical environment on remodelling of the patellar tendon. J Bone Joint Surg Br 91(4):557–564

    Google Scholar 

  196. Arruda EM, Calve S, Dennis RG, Mundy K, Baar K (2006) Regional variation of tibialis anterior tendon mechanics is lost following denervation. J Appl Physiol 101(4):1113–1117

    Google Scholar 

  197. Eliasson P, Fahlgren A, Pasternak B, Aspenberg P (2007) Unloaded rat Achilles tendons continue to grow, but lose viscoelasticity. J Appl Physiol 103(2):459–463

    Google Scholar 

  198. Maganaris CN, Reeves ND, Rittweger J, Sargeant AJ, Jones DA, Gerrits K, De Haan A (2006) Adaptive response of human tendon to paralysis. Muscle Nerve 33(1):85–92

    Google Scholar 

  199. Kinugasa R, Hodgson JA, Edgerton VR, Shin DD, Sinha S (2010) Reduction in tendon elasticity from unloading is unrelated to its hypertrophy. J Appl Physiol 109(3):870–877

    Google Scholar 

  200. Reeves ND, Maganaris CN, Ferretti G, Narici MV (2005) Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol 98(6):2278–2286. doi:10.1152/japplphysiol.01266.2004

    Google Scholar 

  201. Shin D, Finni T, Ahn S, Hodgson JA, Lee HD, Edgerton VR, Sinha S (2008) Effect of chronic unloading and rehabilitation on human Achilles tendon properties: a velocity-encoded phase-contrast MRI study. J Appl Physiol 105(4):1179–1186

    Google Scholar 

  202. Zhao H, Ren Y, Wu YN, Liu SQ, Zhang LQ (2009) Ultrasonic evaluations of Achilles tendon mechanical properties poststroke. J Appl Physiol 106(3):843–849

    Google Scholar 

  203. Couppe C, Suetta C, Kongsgaard M, Justesen L, Hvid LG, Aagaard P, Kjaer M, Magnusson SP (2012) The effects of immobilization on the mechanical properties of the patellar tendon in younger and older men. Clin Biomech (Bristol, Avon) 27(9):949–954. doi:10.1016/j.clinbiomech.2012.06.003

  204. Majima T, Yasuda K, Fujii T, Yamamoto N, Hayashi K, Kaneda K (1996) Biomechanical effects of stress shielding of the rabbit patellar tendon depend on the degree of stress reduction. J Orthop Res 14(3):377–383

    Google Scholar 

  205. Karpakka J, Vaananen K, Virtanen P, Savolainen J, Orava S, Takala TE (1990) The effects of remobilization and exercise on collagen biosynthesis in rat tendon. Acta Physiol Scand 139(1):139–145

    Google Scholar 

  206. Savolainen J, Myllyla V, Myllyla R, Vihko V, Vaananen K, Takala TE (1988) Effects of denervation and immobilization on collagen synthesis in rat skeletal muscle and tendon. Am J Physiol 254(6 Pt 2):R897–R902

    Google Scholar 

  207. Amiel D, Woo SL, Harwood FL, Akeson WH (1982) The effect of immobilization on collagen turnover in connective tissue: a biochemical-biomechanical correlation. Acta Orthop Scand 53(3):325–332

    Google Scholar 

  208. Arnoczky SP, Lavagnino M, Egerbacher M (2007) The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int J Exp Pathol 88(4):217–226. doi:10.1111/j.1365-2613.2007.00548.x

    Google Scholar 

  209. Kawabata H, Katsura T, Kondo E, Kitamura N, Miyatake S, Tanabe Y, Setoguchi T, Komiya S, Yasuda K (2009) Stress deprivation from the patellar tendon induces apoptosis of fibroblasts in vivo with activation of mitogen-activated protein kinases. J Biomech 42(15):2611–2615

    Google Scholar 

  210. Flynn BP, Tilburey GE, Ruberti JW (2013) Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils. Biomech Model Mechanobiol 12(2):291–300. doi:10.1007/s10237-012-0399-2

    Google Scholar 

  211. Wyatt KEK, Bourne JW, Torzilli PA (2009) Deformation-dependent enzyme mechanokinetic cleavage of type I collagen. J Biomech Eng 131(5):051004. doi:10.1115/1.3078177

    Google Scholar 

  212. Adhikari AS, Chai J, Dunn AR (2011) Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J Am Chem Soc 133(6):1686–1689. doi:10.1021/ja109972p

    Google Scholar 

  213. Majima T, Yasuda K, Tsuchida T, Tanaka K, Miyakawa K, Minami A, Hayashi K (2003) Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model. J Orthop Sci 8(6):836–841

    Google Scholar 

  214. Muellner T, Kwasny O, Loehnert V, Mallinger R, Unfried G, Schabus R, Plenk H Jr (2001) Light and electron microscopic study of stress-shielding effects on rat patellar tendon. Arch Orthop Trauma Surg 121(10):561–565

    Google Scholar 

  215. Nakagawa Y, Totsuka M, Sato T, Fukuda Y, Hirota K (1989) Effect of disuse on the ultrastructure of the achilles tendon in rats. Eur J Appl Physiol Occup Physiol 59(3):239–242

    Google Scholar 

  216. Tsuchida T, Yasuda K, Kaneda K, Hayashi K, Yamamoto N, Miyakawa K, Tanaka K (1997) Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons. J Orthop Res 15(6):904–910

    Google Scholar 

  217. Yamamoto N, Ohno K, Hayashi K, Kuriyama H, Yasuda K, Kaneda K (1993) Effects of stress shielding on the mechanical properties of rabbit patellar tendon. J Biomech Eng 115(1):23–28

    Google Scholar 

  218. Boesen AP, Dideriksen KJ, Couppe C, Magnusson SP, Schjerling P, Boesen M, Aagaard P, Kjaer M, Langberg H (2013) Effect of growth hormone on aging connective tissue in muscle and tendon—gene expression, morphology and function following immobilization and rehabilitation. J Appl Physiol. doi:10.1152/japplphysiol.01077.2013

    Google Scholar 

  219. Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med 22(3):328–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rene B. Svensson , Christian Couppé or S. Peter Magnusson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Svensson, R.B., Couppé, C., Magnusson, S.P. (2015). Mechanical Properties of the Aging Tendon. In: Derby, B., Akhtar, R. (eds) Mechanical Properties of Aging Soft Tissues. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-03970-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03970-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03969-5

  • Online ISBN: 978-3-319-03970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics