Skip to main content
Log in

Sensitivity Analysis of Respiratory Parameter Estimates in the Constant-Phase Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The constant-phase model is increasingly used to fit low-frequency respiratory input impedance (Zrs), highlighting the need for a better understanding of the use of the model. Of particular interest is the extent to which Zrs would be affected by changes in parameters of the model, and conversely, how reliable are parameters estimated from model fits to the measured Zrs. We performed sensitivity analysis on respiratory data from 6 adult mice, at functional residual capacity (FRC), total lung capacity (TLC), and during bronchoconstriction, obtained using a 1–25 Hz oscillatory signal. The partial derivatives of Zrs with respect to each parameter were first examined. The limits of the 95% confidence intervals, 2-dimensional pairwise and p-dimensional joint confidence regions were then calculated. It was found that airway resistance was better estimated at FRC, as determined by the confidence region limits, whereas tissue damping and elastance were better estimated at TLC. Airway inertance was poorly estimated at this frequency range, as expected. During methacholine-evoked pulmonary constriction, there was an increase in the uncertainty of airway resistance and tissue damping, but this can be compensated for by using the relative (weighted residuals) in preference over the absolute (unweighted residuals) fitting criterion. These results are consistent with experimental observation and physiological understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Al-Jamal, R., and M. S. Ludwig. Changes in proteoglycans and lung tissue mechanics during excessive mechanical ventilation in rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 281:1078–1087, 2001.

    Google Scholar 

  2. Allen, G., L. K. A. Lundblad, P. Parsons, and J. H. T. Bates. Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93:1709–1715, 2002.

    Google Scholar 

  3. Bates, J. H. T., and A. M. Lauzon. A nonstatistical approach to estimating confidence intervals about model parmaeters: Application to respiratory mechanics. IEEE Trans. Biomed. Eng. 39:94–100, 1992.

    Google Scholar 

  4. Brewer, K. K., H. Sakai, A. M. Alencar, A. Majumdar, S. P. Arold, K. R. Lutchen, E. P. Ingenito, and B. Suki. Lung and alveolar wall elastic and hysteretic behavior in rats: Effects of in vivo elastase treatment. J. Appl. Physiol. 95:1926–1936, 2003.

    Google Scholar 

  5. Csendes, T. Nonlinear parameter estimation by global optimization—Efficiency and reliability. Acta Cybernetica 8:361–370, 1988.

    Google Scholar 

  6. Gomes, R. F. M., X. Shen, R. Ramchandani, R. S. Tepper, and J. H. T. Bates. Comparative respiratory system mechanics in rodents. J. Appl. Physiol. 89:908–916, 2000.

    Google Scholar 

  7. Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:168–178, 1992.

    Google Scholar 

  8. Hirai, T., K. A. McKeown, R. F. Gomes, and J. H. T. Bates. Effects of lung volume on lung and chest wall mechanics in rats. J. Appl. Physiol. 86:16–21, 1999.

    Google Scholar 

  9. Irvin, C. G., and J. H. T. Bates. Measuring the lung function in the mouse: The challenge of size. Respir. Res. 4:4, 2003.

    Google Scholar 

  10. Kaczka, D. W., E. P. Ingenito, E. Israel, and K. R. Lutchen. Airway and lung tissue mechanics in asthma. Am. J. Respir. Crit. Care Med. 159:169–178, 1999.

    Google Scholar 

  11. Kaczka, D. W., E. P. Ingenito, B. Suki, and K. R. Lutchen. Partitioning airway and lung tissue resistances in humans: Effects of bronchoconstrction. J. Appl. Physiol. 82:1531–1541, 1997.

    Google Scholar 

  12. Lutchen, K. R. Sensitivity analysis of respiratory parameter uncertainties: Impact of criterion function form and constraints. J. Appl. Physiol. 69:766–775, 1990.

    Google Scholar 

  13. Lutchen, K. R., J. R. Everett, and A. C. Jackson. Impact of frequency range and input impedance on airway-tissue separation implied from transfer impedance. J. Appl. Physiol. 74:1089–1099, 1993.

    Google Scholar 

  14. Lutchen, K. R., Z. Hantos, and A. C. Jackson. Importance of low-frequency impedance data for reliably quantifying parallel inhomogeneities of respiratory mechanics. IEEE Trans. Biomed. Eng. 35:472–481, 1988.

    Google Scholar 

  15. Lutchen, K. R., Z. Hantos, F. Peták, A. Adamicza, and B. Suki. Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J. Appl. Physiol. 80:1841–1849, 1996.

    Google Scholar 

  16. Lutchen, K. R., and A. C. Jackson. Statistical measures of parameter estimates from model fits to respiratory impedance: Emphasis on joint variabilities. IEEE Trans. Biomed. Eng. 33:1000–1009, 1986.

    Google Scholar 

  17. Lutchen, K. R., and A. C. Jackson. Reliability of parameter estimates from models applied to respiratory impedance data. J. Appl. Physiol. 62:401–413, 1987.

    Google Scholar 

  18. Petak, F., Z. Hantos, A. Adamicza, T. Asztalos, and P. D. Sly. Methacholine-induced bronchoconstriction in rats: Effects of intravenous versus aerosol delivery. J. Appl. Physiol. 82:1479–1487, 1997.

    Google Scholar 

  19. Sakai, H., E. P. Ingenito, R. Mora, S. Abbay, F. S. Cavalcante, K. R. Lutchen, and B. Suki. Hysteresivity of the lung and tissue strip in the normal rat: Effects of heterogeneities. J. Appl. Physiol. 91:737–747, 2001.

    Google Scholar 

  20. Schuessler, T. F., and J. H. T. Bates. A computer-controlled research ventilator for small animals: Design and evaluation. IEEE Trans. Biomed. Eng. 42:860–866, 1995.

    Google Scholar 

  21. Sly, P. D., R. A. Collins, C. Thamrin, D. J. Turner, and Z. Hantos. Volume dependence of airway and tissue impedances in mice. J. Appl. Physiol. 94:1460–1466, 2003.

    Google Scholar 

  22. Sly, P. D., M. J. Hayden, F. Petak, and Z. Hantos. Measurement of low-frequency respiratory impedance in infants. Am. J. Respir. Crit. Care Med. 154:161–166, 1996.

    Google Scholar 

  23. Suki, B., H. Yuan, Q. Zhang, and K. R. Lutchen. Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening. J. Appl. Physiol. 82:1349–1359, 1997.

    Google Scholar 

  24. Tomioka, S., J. H. T. Bates, and C. G. Irvin. Airway and tissue mechanics in a murine model of asthma: Alveolar capsules vs forced oscillations. J. Appl. Physiol. 93:263–270, 2002.

    Google Scholar 

  25. Yuan, H., B. Suki, and K. R. Lutchen. Sensitivity analysis for evaluating nonlinear models of lung mechanics. Ann. Biomed. Eng. 26:230–241, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thamrin, C., Jánosi, T.Z., Collins, R.A. et al. Sensitivity Analysis of Respiratory Parameter Estimates in the Constant-Phase Model. Annals of Biomedical Engineering 32, 815–822 (2004). https://doi.org/10.1023/B:ABME.0000030257.88945.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000030257.88945.81

Navigation