Skip to main content

The Influence of Airway Resistance in the Dynamic Elastance Model

  • Conference paper
  • First Online:
XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016

Part of the book series: IFMBE Proceedings ((IFMBE,volume 57))

Abstract

The selection of optimal positive end-expiratory pressure (PEEP) levels during ventilation therapy of patients with ARDS (acute respiratory distress syndrome) remains a problem for clinicians. A particular mooted strategy states that minimizing the energy transferred to the lung during mechanical ventilation could potentially be used to determine the optimal, patient-specific PEEP levels. The dynamic elastance model of pulmonary mechanics could potentially be used to minimize the energy by localization of the patients’ minimum dynamic elastance range.

The sensitivity of the dynamic elastance model to variance in the airway resistance was analyzed. Subsequently, the airway resistance was determined using two alternate identification methods and was compared to the constant resistance obtained using the dynamic elastance model.

Both identification methods showed similar decreasing trends of the resistance during inspiration. This declining trend is an apparent exponential decrease. Results showed that the constant airway resistance, presumed by the dynamic elastance model, has to be rechecked and investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. P. Amato, C. S. V. Barbas, D. M. Medeiros et al. (1998) Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 338:347-54

    Google Scholar 

  2. J. Silversides and N. Ferguson (2013) Clinical review: Acute respiratory distress syndrome - clinical ventilator management and adjunct therapy. Critical Care 17:225

    Google Scholar 

  3. M. Donahoe (2011) Acute respiratory distress syndrome: A clinical review. Pulmonary Circulation 1:192-211

    Google Scholar 

  4. J. M. Halter, J. M. Steinberg, H. J. Schiller et al. (2003) Positive End-Expiratory Pressure after a Recruitment Maneuver Prevents Both Alveolar Collapse and Recruitment/Derecruitment. Am J Respir Crit Care Med 167:1620-6

    Google Scholar 

  5. Acute-Respiratory-Distress-Syndrome-Network (2000) Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New England Journal of Medicine 342:1301-8

    Google Scholar 

  6. C. Cobelli (2008) Introduction to modeling in physiology and medicine. Academic Press, Amsterdam; Boston

    Google Scholar 

  7. J. H. T. Bates (2009) Lung Mechanics: An Inverse Modeling Approach. Cambridge University Press, United States of America, New York

    Google Scholar 

  8. Y. S. Chiew, J. G. Chase, G. Shaw et al. (2011) Model-based PEEP Optimisation in Mechanical Ventilation. BioMedical Engineering OnLine 10:111

    Google Scholar 

  9. E. van Drunen, Y. S. Chiew, C. Pretty et al. (2014) Visualisation of time-varying respiratory system elastance in experimental ARDS animal models. BMC Pulmonary Medicine 14:33

    Google Scholar 

  10. P. Suter, B. Fairley, and M. Isenberg (1975) Optimum End-Expiratory Airway Pressure in Patients with Acute Pulmonary Failure. N Engl J Med 292:284-9

    Google Scholar 

  11. Y. Chiew, C. Pretty, G. Shaw et al. (2015) Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot and Feasibility Studies 1:1-10

    Google Scholar 

  12. B. Laufer, P. D. Docherty, Y. S. Chiew et al. (2015) Identifying pressure dependent elastance in lung mechanics with reduced influence of unmodelled effects, BMS 2015, Berlin, Germany, 2015

    Google Scholar 

  13. A. Knörzer, P. D. Docherty, Y. S. Chiew et al. (2014) Adjustments to the first order model of pulmonary mechanics to capture equivalent elastance at different pressure and PEEP levels, The 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, 2014

    Google Scholar 

  14. K. Zilles and B. Tillmann (2010) Anatomie. Springer,

    Google Scholar 

  15. M. L. Mogensen, K. S. Steimle, D. S. Karbing et al. (2011) A model of perfusion of the healthy human lung. Computer Methods and Programs in Biomedicine 101:156-65

    Google Scholar 

  16. D. A. Kaminsky (2012) What Does Airway Resistance Tell Us About Lung Function? Respiratory Care 57:85-99

    Google Scholar 

  17. R. Kramme. (2011). Medizintechnik: Verfahren – Systeme – Informationsverarbeitung (4., vollständig überarbeitete und erweiterte Auflage ed.).

    Google Scholar 

  18. A. B. DuBois, S. Y. Botelho, and J. H. Comroe (1956) A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and patients with respiratory disease. The Journal of Clinical Investigation 35:327-35

    Google Scholar 

  19. S. Blonshine and M. D. Goldman (2008) OPtimizing performance of respiratory airflow resistance measurements. Chest 134:1304-9

    Google Scholar 

  20. C. A. Stahl, K. Moller, S. Schumann et al. (2006) Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit Care Med 34:2090 - 8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Laufer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Laufer, B., Kretschmer, J., Docherty, P.D., Chiew, Y.S., Möller, K. (2016). The Influence of Airway Resistance in the Dynamic Elastance Model. In: Kyriacou, E., Christofides, S., Pattichis, C. (eds) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IFMBE Proceedings, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-32703-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32703-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32701-3

  • Online ISBN: 978-3-319-32703-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics