Skip to main content
Log in

Controlling Alternans in Cardiac Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Electrical alternans, the alternation in action potential morphology, has been suggested as an important cause of potentially dangerous cardiac rhythm disorders. Previous studies have developed alternans control strategies based on the dynamics of the relationship between action potential duration and the previous diastolic interval. We demonstrate that alternans in a single cardiac cell can also be controlled by directly modifying the underlying ion channel dynamics. Surprisingly, we find that, for a detailed canine ventricular cell model, the best time to apply the control stimulus is not during the repolarization phase of the action potential, but rather during the early plateau phase, when the charge requirements are two orders of magnitude smaller. Computer simulations show that a single control stimulus applied during the early plateau can completely eliminate small-amplitude alternans, while a small number of stimuli can rapidly extinguish large-amplitude alternans. We have also developed an effective control algorithm that uses only the membrane potential as control input and requires no prior detailed knowledge of the cell dynamics. The study suggests that control strategies based on ion channel dynamics can provide new directions for the development of algorithms intended to control dangerous cardiac rhythm disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bielawski, S., D. Derozier, and P. Glorieux. Controlling unstable periodic-orbits by a delayed continuous feedback. Phys. Rev. E 49:R971–R974, 1994.

    Google Scholar 

  2. Christini, D. J., and J. J. Collins. Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. Phys. Rev. E 53(Part A):R49–R52, 1996.

    Google Scholar 

  3. Christini, D. J., K. M. Stein, S. M. Markowitz, S. Mittal, D. J. Slotwiner, M. A. Scheiner, S. Iwai, and B. B. Lerman. Nonlinear-dynamical arrhythmia control in humans. Proc. Natl. Acad. Sci. U.S.A. 98:5827–5832, 2001.

    Google Scholar 

  4. Courtemanche, M. Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity. Chaos 6:579–600, 1996.

    Google Scholar 

  5. Echebarria, B., and A. Karma. Spatiotemporal control of cardiac alternans. Chaos 12:923–930, 2002.

    Google Scholar 

  6. Fox, J. J., J. L. McHarg, and R. F. Gilmour. Ionic mechanism of electrical alternans. Am. J. Physiol. 282:H516–H530, 2002.

    Google Scholar 

  7. Garfinkel, A., M. L. Spano, W. L. Ditto, and J. N. Weiss. Controlling cardiac chaos. Science 257:1230–1235, 1992.

    Google Scholar 

  8. Garfinkel, A., Y.-H. Kim, O. Voroshilovsky, Z. Qu, J. R. Kil, M.-H. Lee, H. S. Karagueuzian, J. N. Weiss, and P.-S. Chen. Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. 97:6061–6066, 2000.

    Google Scholar 

  9. Gauthier, D. J., G. M. Hall, R. A. Oliver, E. G. Dixon-Tulloch, P. D. Wolf, and S. Bahar. Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method. Chaos 12:952–961, 2002.

    Google Scholar 

  10. Gilmour, R. F. A novel approach to identifying antiarrhythmic drug targets. Drug Discov. Today 8:162–167, 2003.

    Google Scholar 

  11. Gray, R. A., D. J. Huelsing, F. Aguel, and N. A. Trayanova. Effect of strength and timing of transmembrane current pulses on isolated ventricular myocytes. J. Cardiovasc. Electr. 12:1129–1137, 2001.

    Google Scholar 

  12. Guevara, M. R., G. Ward, A. Shrier, and L. Glass. Electrical alternans and period-doubling bifurcations. IEEE Computers in Cardiology, IEEE Computer Society, Silver Spring, 1984, pp. 167–170.

    Google Scholar 

  13. Hall, K., D. J. Christini, M. Tremblay, J. J. Collins, L. Glass, and J. Billette. Dynamic control of cardiac alternans. Phys. Rev. Lett. 78:4518–4521, 1997.

    Google Scholar 

  14. Hall, M. G., and D. J. Gauthier. Experimental control of cardiac muscle alternans. Phys. Rev. Lett. 88: 198102, 2002.

    Google Scholar 

  15. Karma, A. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett. 71:1103–1106, 1993.

    Google Scholar 

  16. Karma, A. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4:461–472, 1994.

    Google Scholar 

  17. Karma, A. New paradigm for drug therapies of cardiac fibrillation. Proc. Natl. Acad. Sci. U.S.A. 97:5687–5689, 2000.

    Google Scholar 

  18. Koller, M. L., M. L. Riccio, and R. F. Gilmour. Effects of [K+]o on electrical restitution and spatiotemporal organization during ventricular fibrillation. Am. J. Physiol. Heart Circ. Physiol. 279:H2665–H2672, 2000.

    Google Scholar 

  19. Lee, M. H., S. F. Lin, T. Ohara, C. Omichi, Y. Okuyama, E. Chudin, A. Garfinkel, J. N. Weiss, H. S. Karagueuzian, and P. S. Chen. Effects of diacetyl monoxime and cytochalasin D on ventricular fibrillation in swine right ventricles. Am. J. Physiol. Heart Circ. Physiol. 280:H2689–H2696, 2001.

    Google Scholar 

  20. Li, M.-Y., and N. F. Otani. Ion channel basis for alternans and memory in cardiac myocytes. Ann. Biomed. Eng. 31:1213–1230, 2003.

    Google Scholar 

  21. Nolasco, J. B., and R. W. Dahlen. A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25:191–196, 1968.

    Google Scholar 

  22. Pastore, J. M., S. D. Girouard, K. R. Laurita, F. G. Akar, and D. S. Rosenbaum. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99:1385–1394, 1999.

    Google Scholar 

  23. Pyragas, K. Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170:421–428, 1992.

    Google Scholar 

  24. Qu, Z., J. Weiss, and A. Garfinkel. Cardiac electrical restitution properties and stability of reentrant spiral waves: A simulation study. Am. J. Physiol. 276:H269–H283, 1999.

    Google Scholar 

  25. Rappel, W.-J., F. Fenton, and A. Karma. Spatiotemporal control of wave instabilities in cardiac tissue. Phys. Rev. Lett. 83:456–459, 1999.

    Google Scholar 

  26. Riccio, M. L., M. L. Koller, and R. F. Gilmour. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ. Res. 84:955–963, 1999.

    Google Scholar 

  27. Walker, M. L., and D. S. Rosenbaum. Repolarization alternans: Implications for the mechanism and prevention of sudden cardiac death. Cardiovasc. Res. 57:599–614, 2003.

    Google Scholar 

  28. Watanabe, M., and R. F. Gilmour. Strategy for control of complex low-dimensional dynamics in cardiac tissue. J. Math. Biol. 35:73–87, 1996.

    Google Scholar 

  29. Weidmann, S. Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. 115:227–236, 1951.

    Google Scholar 

  30. Weiss, J. N., A. Garfinkel, H. S. Karagueuzian, Z. Qu, and P.-S. Chen. Chaos and the transition to ventricular fibrillation: A new approach to antiarrhythmic drug evaluation. Circulation 99:2819–2826, 1999.

    Google Scholar 

  31. Zipes, D. P., and H. J. J. Wellens. Sudden cardiac death. Circulation 98:2334–2351, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Otani, N.F. Controlling Alternans in Cardiac Cells. Annals of Biomedical Engineering 32, 784–792 (2004). https://doi.org/10.1023/B:ABME.0000030254.33176.f8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000030254.33176.f8

Navigation