Skip to main content
Log in

Alteration in Fluid Mechanics in Porcine Femoral Arteries with Atheroma Development

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although the relationship between the local wall shear stresses (WSS) and atheroma development has been previously studied, the effect of variable regional wall distensibility with early atherosclerotic lesions and its effect on local hemodynamics have not been well investigated. We induced early atherosclerotic lesion development in one femoral artery in a Yucatan miniswine model with the contralateral artery serving as control. Eight weeks following atheroma formation, hemodynamic and intravascular ultrasound image data were obtained. Using the measured regional arterial distension as the moving boundary condition, unsteady laminar incompressible computational analysis was performed on the reconstructed arterial segments. With the development of early atherosclerotic lesions, there was increased wall distensibility and an increase in the computed normalized wall shear stress amplitude (NWSA). Alterations in the local fluid mechanics and mass transport at these sites may need to be considered in our understanding of the continued growth of these lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anayiotos, A. S., S. A. Jones, D. P. Giddens, S. Glagov, and C. K. Zarins. Shear stress at a compliant model of the human carotid bifurcation. ASME J. Biomech. Eng. 116:98–106, 1994.

    Google Scholar 

  2. Born, G. V. R., and P. D. Richardson. Mechanical properties of human atherosclerosis. In: Pathobiology of Human Atherosclerotic Plaques, edited by S. Seager, W. Newman, and S. Schaffer. New York: Springer-Verlag, 1990, pp. 413–424.

    Google Scholar 

  3. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1161, 1969.

    Google Scholar 

  4. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear: Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. London, Ser. B 177:109–159, 1971.

    Google Scholar 

  5. Caro, C. G., and K. H. Parker. The effect of haemodynamic factors on the arterial wall. In: Atherosclerosis—Biology and Clinical Science, edited by A. G. Olsson. New York: Churchill Livingstone, 1987, pp. 183–195.

    Google Scholar 

  6. Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford: Oxford University Press, 1978.

    Google Scholar 

  7. Chandran, K. B., and M. J. Vonesh. Mechanical analysis of reactivity to atherosclerosis from three-dimensional reconstruction of vascular segments. In: Non-Invasive Imaging of Atherosclerosis, edited by S. Glagov, M. Mercury, C. K. Zarins, and D. D. McPherson. Boston: Kluwer Academic, 1997, pp. 130–168.

    Google Scholar 

  8. Chandran, K. B., M. J. Vonesh, A. Roy, S. Greenfield, B. Kane, R. Greene, and D. D. McPherson. Computation of vascular flow dynamics from intravascular ultrasound images. Med. Eng. Phys. 18:295–304, 1996.

    Google Scholar 

  9. de Korte, C. L., G. Pasterkamp, A. F. van der Steen, H. A. Woutman, and N. Born. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 102:617–623, 2000.

    Google Scholar 

  10. Deng, X., Y. Marois, R. Guidoin, Y. Merhi, P. Stroman, M. W. King, and Y. Douville. Efficiency of an external support to reduce lipid infiltration into venous grafts: In vitro evaluation. Artif. Organs 20:1208–1214, 1996.

    Google Scholar 

  11. Duncan, D. D., O. J. Deters, C. B. Bargeron, and M. H. Friedman. The effect of compliance on wall shear in casts of a human aortic bifurcation. ASME J. Biomech. Eng. 112:183–188, 1990.

    Google Scholar 

  12. Friedman, M. H. Arteriosclerosis research using vascular flow models: From 2-D branches to compliant replicas. ASME J. Biomech. Eng. 115:595–601, 1993.

    Google Scholar 

  13. Friedman, M. H., C. B. Bargeron, D. D. Duncan, G. M. Hutchins, and F. F. Mark. Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. ASME J. Biomech. Eng. 114:317–320, 1992.

    Google Scholar 

  14. Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear-dependent thickening of the human arterial intima. Atherosclerosis 60:161–171, 1986.

    Google Scholar 

  15. Friedman, M. H., and L. W. Ehrlich. Effect of spatial variations in shear on diffusion at the wall of an arterial branch. Circ. Res. 37:446–454, 1975.

    Google Scholar 

  16. Friedman, M. H., G. M. Hutchins, C. B. Bargeron, O. J. Deters, and F. F. Mark. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39:425–436, 1981.

    Google Scholar 

  17. Friedman, M. H., G. M. Hutchins, C. B. Bargeron, O. J. Deters, and F. F. Mark. Correlation of human arterial morphology with hemodynamic measurements in arterial casts. ASME J. Biomech. Eng. 103:204–207, 1981.

    Google Scholar 

  18. Fry, D. L. Response of the arterial wall to certain physical factors. In: Atherogenesis: Initiating Factors, Ciba Fdn. Symp, (Vol. 12). New York: Associated Scientific, 1973, pp. 93–125.

    Google Scholar 

  19. Gal, D., A. J. Rongione, G. A. Slovenkai, S. T. DeJesus, A. Lucas, C. D. Fields, and J. M. Isner. Atherosclerotic Yucatan micro swine: An animal model with high-grade, fibrocalcific, nonfatty lesions suitable for testing catheter-based interventions, Am. Heart. J. 119(2, Pt. 1):291–300, 1990.

    Google Scholar 

  20. Giddens, D. P., C. K. Zarins, and S. Glagov. The role of fluid mechanics in the localization and detection of atherosclerosis. ASME J. Biomech. Eng. 115:588–594, 1993.

    Google Scholar 

  21. Glagov, S., C. K. Zarins, D. P. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis: Insights and perspectives gained from studies in the human arteries. Arch. Pathol. Lab. Med. 112:1018–1031, 1988.

    Google Scholar 

  22. Hayashi, K., K. Ide, and T. Matsumoto. Aortic walls in atherosclerotic rabbits—mechanical study. J. Biomech. Eng. 116:284–293, 1994.

    Google Scholar 

  23. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.

    Google Scholar 

  24. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Atherosclerosis 5:293–302, 1985.

    Google Scholar 

  25. Lai, Y. G. Unstructured grid arbitrarily shaped element method for fluid flow simulation. AIAA J. 38:2246–2252, 2000.

    Google Scholar 

  26. Lai, Y. G., and A. J. Przekwas. A finite-volume method for fluid flow simulations with moving boundaries. Comp. Fluid Dyn. 2:19–40, 1994.

    Google Scholar 

  27. Liu, Y., Y. G. Lai, A. Hamilton, A. Nagaraj, B. J. Kane, D. D. McPherson, and K. B Chandran. Effect of physiologic artery distensibility on wall shear stress distribution in vascular flow dynamics. Annual Conference of the Biomedical Engineering Society, Seattle, WA, Oct. 2000. (Ann. Biomed. Eng. 28(Suppl. 1):S–62.)

  28. Liu, Y., A. Nagaraj, B. Kane, A. Hamilton, R. Greene, D. D. McPherson, and K. B. Chandran. Pulsatile flow simulation in arterial vascular segments using intravascular ultrasound images. Med. Eng. Phys. 23:583–595, 2001.

    Google Scholar 

  29. Moore, J. E. Jr., E. S. Weydahl, and A. Santamarina. Frequency dependence of dynamic curvature effects on flow through coronary arteries. J. Biomech. Eng. 123:129–133, 2001.

    Google Scholar 

  30. Schmidt-Trucksass, A., and M. Huonker. Assessment of atherosclerotic arterial changes in the carotid artery with noninvasive ultrasound. Z. Kardiol. 89(Suppl. 2):124–129, 2000.

    Google Scholar 

  31. Tropea, B. I., S. P. Schwarzacher, A. Chang, C. Asvar, P. Huie, R. K. Sibley, and C. K. Zarins. Reduction of aortic wall motion inhibits hypertension-mediated experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20:2127–2133, 2000.

    Google Scholar 

  32. Umeno, T., M. Yamagishi, H. Tsutsui, Y. Hongo, M. Uematsu, S. Nakatani, Y. Yasumura, K. Komamura, T. Sasaki, and K. Miyatake. Intravascular ultrasound evidence for importance of plaque distribution in the determination of regional artery wall compliance. Heart and Arteries (Suppl. 12):182–184, 1997.

    Google Scholar 

  33. Vonesh, M. J., C. H. Cho, J. V. Pinto, D. S. Lee, S. I. Roth, K. B. Chandran, and D.D. McPherson. Regional vascular mechanical property determination using three-dimensional intravascular ultrasound and finite-element analysis. Am. J. Physiol. 272 (Heart Circ. Physiol. 41):H425–H437, 1997.

    Google Scholar 

  34. Weit, S. P., M. J. Vonesh, M. J. Waligora, B. J. Kane, and D. D. McPherson. The effect of vascular curvature on three-dimensional reconstruction of intravascular ultrasound images. Ann. Biomed. Eng. 24:695–701, 1996.

    Google Scholar 

  35. White, C. J., S. R. Ramee, H. G. Card, L. A. Abrahams, J. T. Svinarich, C. E. Wade, W. G. Rodkey, and R. Virmani. Laser angioplasty: An atherosclerotic swine model. Lasers Surg. Med. 8:318–321, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Hamilton, A., Nagaraj, A. et al. Alteration in Fluid Mechanics in Porcine Femoral Arteries with Atheroma Development. Annals of Biomedical Engineering 32, 544–554 (2004). https://doi.org/10.1023/B:ABME.0000019174.02192.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000019174.02192.ac

Navigation