Skip to main content
Log in

Growth and C:N:P ratios in copepods grazing on N- or Si-limited phytoplankton blooms

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate how nutrient limitation in phytoplankton blooms affects growth and C:N:P ratios in marine pelagic copepods. We performed two mesocosm experiments on the Atlantic coast near Trondhjem (Norway). Si-limitation in a phytoplankton bloom was triggered by N and P additions (NP treatment) and N-limitation was triggered by N, P and Si additions (NPSi treatment). Both nutrient treatments stimulated microalgal growth and increased the biomass of the phytoplankton manifold. The initial phytoplankton community consisted of flagellates and diatoms. Throughout both experiments, community composition stayed relatively stable and diverse in the NP treatments, but in the NPSi treatments large and heavily silicified diatoms came to dominate completely. Phytoplankton C:N ratios in the Si-limited blooms were close to the Redfield ratio of 6.6 (on a molar basis), but they were higher in the Control treatment without nutrient additions (ca. 8.6) and up to 14 in heavily N-limited blooms. When phytoplankton blooms (chlorophyll a > 25 nmol l−1) had established, wild copepods were added to the mesocosms. During Si-limitation the copepod density increased by ca. 40% in one of the experiments, while the C:N ratio was 5.5–6 in the copepods. During N-limitation, the copepod density stayed stable, while the C:N ratio increased to ca. 7 in the course of the experiment. In the other experiment the copepod density decreased by ca. 25%, irrespective of nutrient treatment (C:N ratio ca. 9). The N:P ratios in the copepods varied between 16 and 22 and were not different in the NP and NPSi treatments. Our study shows that N-limitation in phytoplankton cells can increase the C:N ratio of their grazers, which has a reportedly negative effect on copepod growth and reproduction. Our study also shows that copepod populations can be regulated by seawater Si:N ratios via diatoms: at high ratios the growth from eggs/nauplii to copepodites was hampered. High Si:N ratios provide diatoms with possibilities to escape from grazing (large species, heavy silicification, excretion of secondary metabolites), leading to the accumulation of algal biomass without transfer to higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, M., L. Van Nieuwerburgh & P. Snoeijs, 2003. Pigment transfer from phytoplankton to zooplankton with emphasis on astaxanthin production in the Baltic Sea food web. Mar. Ecol. Prog. Ser. 254: 213–224.

    Google Scholar 

  • Ban, S., C. Burns, J. Castel, Y. Chaudron, E. Christou, R. Escribano, S. F. Umani, S. Gasparini, F. G. Ruiz, M. Hoffmeyer, A. Ianora, H. K. Kang, M. Laabir, A. Lacoste, A. Miralto, X. Ning, S. Poulet, V. Rodriguez, J. Runge, J. Shi, M. Starr, S. Uye & Y. Wang, 1997. The paradox of diatom-copepod interactions. Mar. Ecol. Prog. Ser. 157: 287–293.

    Google Scholar 

  • Brown, M. R., S. W. Jeffrey, J. K. Volkman & G. A. Dunstan, 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151: 315–331.

    Google Scholar 

  • Caraco, N., J. Cole & G. E. Likens, 1990. A comparison of phosphorous immobilisation in sediments of freshwater and coastal marine waters. Biochemistry 9: 277–290.

    Google Scholar 

  • Carlsson, P. & E. Granéli, 1999. Effects of N:P:Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea. II. Phytoplankton species composition. Aquat. Microb. Ecol. 18: 55–65.

    Google Scholar 

  • Carrillo, P., M. Villar-Argaiz & J. M. Medina-Sánchez, 2001. Relationships between N:P ratio and growth rate during the life cycle of calanoid copepods: An in situ measurement. J. Plankton Res. 23: 537–547.

    Google Scholar 

  • Conley, D. J., C. L. Schelske & E. F. Stoermer, 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Prog. Ser. 101: 179–192.

    Google Scholar 

  • Duarte, C. M., S. Agustí & N. S. R. Agawin, 2000. Response of a Mediterranean phytoplankton community to increased nutrient inputs: a mesocosm experiment. Mar. Ecol. Prog. Ser. 195: 61–70.

    Google Scholar 

  • Egge, J. K. & D. L. Aksnes, 1992. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 83: 281–289.

    Google Scholar 

  • Egge, J. K. & A. Jacobsen, 1997. Influence of silicate on particulate carbon production in phytoplankton. Mar. Ecol. Prog. Ser. 147: 219–230.

    Google Scholar 

  • Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Nuberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann & R. W. Sterner, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    PubMed  Google Scholar 

  • Evansson, M., E. A. Bornhold, R. H. Goldblatt, P. J. Harrison & A. G. Lewis, 2000. Temporal variation in body composition and lipid storage of the overwintering, subarctic copepod Neocalanus plumchrus in the strait of Georgia, British Columbia (Canada). Mar. Ecol. Prog. Ser. 192: 239–247.

    Google Scholar 

  • Geider, R. J. & J. La Roche, 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37: 1–17.

    Google Scholar 

  • Gismervik, I., 1997. Stoichiometry analysis of some marine planktonic crustaceans. J. Plankton Res. 19: 279–285.

    Google Scholar 

  • Gismervik, I., Y. Olsen & O. Vadstein, 2002. Micro-and mesozooplankton response to enhanced nutrient input-a mesocosm study. Hydrobiologia 484: 75–87.

    Google Scholar 

  • Grasshoff, K., 1999. Methods of Seawater Analyses. Wiley-VCH, Cambridge, Weinheim. 600 pp.

    Google Scholar 

  • Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine plankton diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.

    PubMed  Google Scholar 

  • Hansen, B. W., B. H. Hygum, M. Brozek, F. Jensen & C. Rey, 2000. Food web interactions in a Calanus finmarchicus dominated pelagic ecosystem-a mesocosm study. J. Plankton Res. 22: 569–588.

    Google Scholar 

  • Hays, G.C., H. Kennedy & B. W. Frost, 2001. Individual variability in diel vertical migration of a marine copepod: why some individuals remain at depth while others migrate. Limnol. Oceanogr. 46: 2050–2054.

    Google Scholar 

  • Hessen, D. O., 1992. Nutrient element limitation of zooplankton production. Am. Nat. 140: 799–814.

    Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424.

    Google Scholar 

  • Irigoien, X., R. P. Harris, H. M. Verheye, P. Joly, J. Runge, M. Starr, D. Pond, R. Campbell, R. Shreeve, P. Ward, A. N. Smith, H. G. Dam, W. Peterson, V. Tirelli, M. Koski, T. Smith, D. Harbour & R. Davidson, 2002. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419: 387–389.

    PubMed  Google Scholar 

  • Jónasdóttir, S. H. & T. Kiørboe, 1996. Copepod recruitment and food composition: do diatoms affect hatching success? Mar. Biol. 125: 743–750.

    Google Scholar 

  • Kiørboe, T., 1989. Phytoplankton growth rate and nitrogen content: implications for feeding and fecundity in a herbivorous copepod. Mar. Ecol. Prog. Ser. 55: 229–234.

    Google Scholar 

  • Kleppel, G. S., 1993. On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 99: 183–195.

    Google Scholar 

  • Kleppel, G. S., D. V. Holliday & R. E. Pieper, 1991. Trophic interactions between copepods and microplankton: A question about the role of diatoms. Limnol. Oceanogr. 36: 172–178.

    Google Scholar 

  • Koski, M., 1999. Carbon:nitrogen ratios of Baltic Sea copepods-indication of mineral limitation? J. Plankton Res. 21: 1565–1573.

    Google Scholar 

  • Kristiansen, S. & E. E. Hoell, 2002. The importance of silicon for marine production. Hydrobiol. 484: 21–31.

    Google Scholar 

  • Lassus, P., G. Arzul, E. Erard-Le Denn, P. Gentien & C. Marcaillou-Le Baut, 1995 (eds). Harmful Marine Algal Blooms. Lavoisier, Paris, 878 pp.

    Google Scholar 

  • Mauchline, J., 1998. Advances in marine Biology. The Biology of the Calanoid Copepods. Academic Press, London, 710 pp.

    Google Scholar 

  • Miralto, A., G. Barone, G. Romano, S. A. Poulet, A. Ianora, G. L. Russo, I. Buttino, G. Mazzarella, M. Laabir, M. Cabrini & M. G. Giacobbe, 1999. The insidious effect of diatoms on copepod reproduction. Nature 402: 173–176.

    Google Scholar 

  • Nejstgaard, J. C., B. G. Hygum, L.-J. Naustvoll & U. Båmstedt, 2001. Zooplankton growth, diet and reproductive success compared in simultaneous diatom-and flagellate microzooplanktondominated plankton blooms. Mar. Ecol. Prog. Ser. 221: 77–91.

    Google Scholar 

  • Officer, C. B. & J. H. Ryther, 1980. The possible importance of silicon in marine eutrophication. Mar. Ecol. Prog. Ser. 3: 83–91.

    Google Scholar 

  • Pertola, S., M. Koski & M. Viitasalo, 2002. Stoichiometry of mesozooplankton in N-and P-limited areas of the Baltic Sea. Mar. Biol. 140: 425–434.

    Google Scholar 

  • Prins, T. C., V. Escaravage, L. P. M. J. Wetsteyn, J. C. H. Peeters & A. C. Smaal, 1999. Effects of different N-and P-loading on primary and secondary production in an experimental marine ecosystem. Aquatic Ecology 33: 65–81.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of seawater. In Hill, M. N. (ed.), The Sea, Vol. 2. Interscience Publishers, New York: 26–77.

    Google Scholar 

  • Smayda, T. J., 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In Granéli, E., B. Sundström, L. Edler & D. M. Anderson (eds). Toxic Marine Phytoplankton. Elsevier, Amsterdam: 29–41.

    Google Scholar 

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Envir. Pollut. 100: 179–196.

    Google Scholar 

  • Snoeijs, P., 1998. Diatoms and environmental change in brackish waters. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 298–333.

    Google Scholar 

  • Snoeijs, P., S. Busse & M. Potapova, 2002. The importance of diatom cell size in community analysis. J. Phycol. 38: 265–272.

    Google Scholar 

  • Sterner, R. W. & D. O. Hessen, 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Syst. 25: 1–29.

    Google Scholar 

  • Strom, S. L. & N. A. Welschmeyer, 1991. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean. Limnol. Oceanogr. 36: 50–63.

    Google Scholar 

  • Tang, K. W. & H. G. Dam, 2001. Phytoplankton inhibition of copepod egg hatching: test of an exudate hypothesis. Mar. Ecol. Prog. Ser. 209: 197–202.

    Google Scholar 

  • Tomas, C. R., 1997. Identifying Marine Phytoplankton. Academic Press, London, 858 pp.

    Google Scholar 

  • Turner, J. T., P. A. Tester, L. A. Lincoln, P. Carlsson & E. Granéli, 1999. Effects of N:P:Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea. III. Zooplankton populations and grazing. Aquat. Microb. Ecol. 18: 37–54.

    Google Scholar 

  • Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justic, R. F. Shaw & J. Cope, 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proc. Natl. Acad. Sci. USA 95: 13048–13051.

    PubMed  Google Scholar 

  • Utermöhl, H., 1931. Neue Wege in der quantitativen Erfassung des Planktons (Mit besonderer Berücksichtigung des Ultraplanktons). Verh. Int. Ver. Limnol. 5: 567–596.

    Google Scholar 

  • Walve, J & U. Larsson, 1999. Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J. Plankt. Res. 21: 2309–2321.

    Google Scholar 

  • Wright, S. W. & S. W. Jeffrey, 1997. High-resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Unesco, Paris: 327–341.

    Google Scholar 

  • Wright, S. W., S. W. Jeffrey & R. F. C. Mantoura, 1997. Evaluation of methods and solvents for pigment extraction. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Unesco, Paris: 261–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Nieuwerburgh, L., Wänstrand, I. & Snoeijs, P. Growth and C:N:P ratios in copepods grazing on N- or Si-limited phytoplankton blooms. Hydrobiologia 514, 57–72 (2004). https://doi.org/10.1023/B:hydr.0000018206.02271.2b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:hydr.0000018206.02271.2b

Navigation