Skip to main content
Log in

Heat Transfer in Turbulent Rayleigh–Bénard Convection Below the Ultimate Regime

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A Rayleigh–Bénard cell has been designed to explore the Prandtl (Pr) dependence of turbulent convection in the cross-over range 0.7<Pr<21 and for the full range of soft and hard turbulences, up to Rayleigh number Ra≃1011. The set-up benefits from the favourable characteristics of cryogenic helium-4 in fluid mechanics, in situ fluid property measurements, and special care on thermometry and calorimetric instrumentation. The cell is cylindrical with diameter/height=0.5. The effective heat transfer Nu(Ra, Pr) has been measured with unprecedented accuracy for cryogenic turbulent convection experiments in this range of Rayleigh numbers. Spin-off of this study include improved fits of helium thermodynamics and viscosity properties. Three main results were found. First the Nu(Ra) dependence exhibits a bimodality of the flow with 4–7% difference in Nu for given Ra and Pr. Second, a systematic study of the side-wall influence reveals a measurable effect on the heat transfer. Third, the Nu(Pr) dependence is very small or null: the absolute value of the average logarithmic slope (d ln Nu/d ln Pr)Ra is smaller than 0.03 in our range of Pr, which allows to discriminate between experiments with contradictory results [Ashkenazi et al., Phys. Rev. Lett. 83, 3641 (1999)] [Ahlers et al., Phys. Rev. Lett. 86, 3320 (2001)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Kadanoff, Phys. Today 54, 34(2001).

    Google Scholar 

  2. D. Tritton, Physical Fluid Dynamics, 2nd ed. (Clarendon Press, 1988).

  3. D. C. Threlfall, J. Fluid. Mech. 67 (part 1), 17(1975).

    Google Scholar 

  4. F. Heslot, B. Castaing, and A. Libchaber, Phys. Rev. A 36, 5870(1987).

    Google Scholar 

  5. X.-Z. Wu and A. Libchaber, Phys. Rev. A 45, 842(1992).

    Google Scholar 

  6. X. Chavanne, F. Chillà, B. Castaing, B. Hébral, B. Chabaud, and J. Chaussy, Phys. Rev. Lett. 79, 3648(1997).

    Google Scholar 

  7. J. Niemela, L. Skrbek, K. Sreenivasan, and R. Donnelly, Nature 404, 837(2000).

    Google Scholar 

  8. P.-E. Roche, B. Castaing, B. Chabaud, and B. Hébral, Phys. Rev. E 63, 045303(R) 1(2001).

    Google Scholar 

  9. R. Kraichnan, Phys. Fluids 5, 1374(1962).

    Google Scholar 

  10. G. Ahlers and R. P. Behringer, Phys. Rev. Lett. 40, 712(1978).

    Google Scholar 

  11. P.-E. Roche, B. Castaing, B. Chabaud, B. Hébral, and J. Sommeria, Eur. Phys. J. B 24, 405(2001). 12._In our measurements, the average temperature and density slightly differ from one point to another. These variations in the experimental conditions are precisely measured and the fluid properties are recalculated for each point. If we make the unrealistic hypothesis that the fluid properties variation is estimated with a 100% error, the resulting uncertainty of the effective power law of the Nu(Ra) dependence would be less than 4%.

    Google Scholar 

  12. S. Ashkenazi and V. Steinberg, Phys. Rev. Lett. 83, 3641(1999).

    Google Scholar 

  13. G. Ahlers and X. Xu, Phys. Rev. Lett. 86, 3320(2001).

    Google Scholar 

  14. Y. Liu and R. E. Ecke, Phys. Rev. Lett. 79, 2257(1997).

    Google Scholar 

  15. R. Verzicco and R. Camussi, J. Fluid Mech. 383, 55(1999).

    Google Scholar 

  16. R. M. Kerr and J. R. Herring, J. Fluid Mech. 419(2000).

  17. K. Xia, S. Lam, and S. Zhou, Phys. Rev. Lett. 88, 064501(2002).

    Google Scholar 

  18. X. Chavanne, F. Chilla, B. Chabaud, B. Castaing, J. Chaussy, and B. Hébral, J. Low Temp. Phys. 104, 109(1996).

    Google Scholar 

  19. X. Chavanne, B. Castaing, B. Chabaud, F. Chilla, and B. Hébral, Cryogenics 38, 1191(1998).

    Google Scholar 

  20. X. Chavanne, Ph.D. thesis, Université Joseph Fourier, Grenoble (1997).

  21. P.-E. Roche, Ph.D. thesis, Université Joseph-Fourier (2001).

  22. S. Chaumat, B. Castaing, and F. Chilla, in Advances in Turbulence IX, I. P. Castro and P. E. Hancock, eds. (CIMNE, Barcelona, 2002), Proceedings of the 9th European Turbulence Conference, pp. 159-162.

    Google Scholar 

  23. R. Verzicco, Submitted to Phys. Fluids (2003).

  24. B. Castaing, G. Bonfait, and D. Thoulouze, Physica B&C 109–;110B, 2093(1982).

    Google Scholar 

  25. R. Donnelly and C. Barenghi, J. Phys. Chem. Ref. Data 27, 1217(1998).

    Google Scholar 

  26. R. Mc Carty and V. Arp, Advances in Cryogenic Engineering, R. W. Fast, ed., Vol. 35 (Plenum Press, New York, 1990), p. 1465

    Google Scholar 

  27. M. R. Moldover, Phys. Rev. 182, 342(1969).

    Google Scholar 

  28. H. A. Kierstead, Phys. Rev. A 3, 329(1971).

    Google Scholar 

  29. H. Kierstead, Phys. Rev. A 7, 242251(1973).

    Google Scholar 

  30. R. Mc Carty, J. Phys. Chem. Ref. Data 2, 923(1973).

    Google Scholar 

  31. A. Acton and K. Kellner, Physica B 90, 192(1977).

    Google Scholar 

  32. A. Acton and K. Kellner, Physica B 103, 212(1981).

    Google Scholar 

  33. C. Agosta, S. Wang, L. H. Cohen, and H. Meyer, J. Low Temp. Phys. 67, 237(1987).

    Google Scholar 

  34. BIPM, Tech. Rep., Bureau International des Poids et Mesures (1990).

  35. W. Steward and G. Wallace, 10 704, report, NBS (1971).

  36. S. Wang and H. Meyer, J. Low Temp. Phys. 69, 377(1987).

    Google Scholar 

  37. V. Arp, private communication.

  38. R. A. Aziz, A. R. Janzen, and M. R. Moldover, Phys. Rev. Lett. 74, 1586(1995).

    Google Scholar 

  39. uH. Meyer, private communication.

  40. X. Wu, Ph.D. thesis, University of Chicago (1991).

  41. E. Siggia, Annu. Rev. Fluid Mech. 26, 137(1994).

    Google Scholar 

  42. R. Verzicco and R. Camussi, J. Fluid Mech. 477, 19(2003).

    Google Scholar 

  43. G. Ahlers, Phys. Rev. E 63, 015303(R)(2001).

    Google Scholar 

  44. R. Verzicco, J. Fluid Mech. 473, 201(2002).

    Google Scholar 

  45. J. Niemela, L. Skrbek, K. Sreenivasan, and R. Donnelly, J. Fluid Mech. 481, 355(2003).

    Google Scholar 

  46. P.-E. Roche, B. Castaing, B. Chabaud, and B. Hébral, Europhys. Lett. 58, 693(2002).

    Google Scholar 

  47. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X. Wu, S. Zaleski, and G. Zanetti, J. Fluid Mech. 24, 137(1989).

    Google Scholar 

  48. B. I. Shraiman and E. D. Siggia, Phys. Rev. A 42, 3650(1990).

    Google Scholar 

  49. S. Grossmann and D. Lohse, Phys. Rev. Lett. 86, 3316(2001).

    Google Scholar 

  50. B. Castaing, B. Chabaud, B. Hébral, X. Chavanne, O. Chanal, and P.-E. Roche, in Advances in Turbulence VIII, C. Dopazo, ed. (CIMNE, Barcelona, 2000), Proceedings of the 8th European Turbulence Conference, pp. 125-32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roche, PE., Castaing, B., Chabaud, B. et al. Heat Transfer in Turbulent Rayleigh–Bénard Convection Below the Ultimate Regime. Journal of Low Temperature Physics 134, 1011–1042 (2004). https://doi.org/10.1023/B:JOLT.0000016727.23228.78

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000016727.23228.78

Navigation