Skip to main content
Log in

Selective dissolution of brass in salt water

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The selective dissolution of brass was studied using potentiodynamic polarization, coloumetric analysis and electrochemical impedance spectroscopy (EIS). Using coloumetric analysis, the partial currents i Zn and i Cu were measured under various potentials and chloride concentrations. Chloride ions promote the dissolution of Zn and Cu and hence increase the rate of dissolution of the alloy. At active potentials, zinc dissolves preferentially leaving the alloy surface enriched in copper. Under this condition, the polarization resistance of the interface and its double layer capacity increase with the time and extent of dissolution of the alloy. As the chloride concentration increases and/or the potential shifts in the noble direction, the rate of copper dissolution increases so that simultaneous dissolution of both components is observed. This increase in the rate of copper dissolution is enhanced by the higher stability of the copper chloride complex (CuCl2 ) compared to zinc chloride (ZnCl2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Pickering, Corros. Sci. 23 (1983) 1107.

    Google Scholar 

  2. H. Kaiser, in F. Mansfield (Ed), ‘Alloy Dissolution in Corrosion Mechanisms’ (Marcel Dekker, New York, 1987), p. 85.

    Google Scholar 

  3. C. van Orden, in R. Baboian (Ed), ‘Corrosion Tests and Standards: Application and Interpretation’ (ASTM 28-020095-27 (ASTM, Philadelphia, PA, 1995).

    Google Scholar 

  4. M.G. Fontana, ‘Corrosion Engineering’ (McGraw-Hill, New York, 3rd edn, 1986), p.86.

    Google Scholar 

  5. D.A. Jones, ‘Principles and Prevention of Corrosion’ (Prentice-Hall, Englewood Cliffs, NJ 2nd edn, 1996), p. 20.

    Google Scholar 

  6. N.W. Polan, in ‘Metals Handbook, Corrosion, Vol. 13’ (ASM International, Materials Park, OH, 9th edn, 1987).

    Google Scholar 

  7. Z. Liu, L. Lin, J. Xu and Y. Zhao, Chin. J. Mater. Res. (China) 14 (2000) 145.

    Google Scholar 

  8. L. Burzynska, Corros. Sci. 43 (2001) 1053.

    Google Scholar 

  9. A.A. Elwarraky, J. Mater. Sci. 31 (1196) 119.

    Google Scholar 

  10. R.K. Diannappa and S.M. Mayanna, Corros. Sci. 27 (1987) 349.

    Google Scholar 

  11. I. Singh, 'Anti-Corrosion, (March 1988), p. 4.

  12. H.W. Pickering and P.J. Byrne, J. Electrochem. Soc. 116 (1969) 1492; 118 (1971) 209.

    Google Scholar 

  13. G.T. Burstein and G. Gao, J. Electrochem. Soc. 141 (1994) 912.

    Google Scholar 

  14. H. Martin, P. Carro, A. Hernandez Creus, J. Fernandez, P. Esparza, S. Gonzalez, R.C. Salvarezza and A.J. Arvia, J. Phys. Chem. 104B (2000) 8229.

    Google Scholar 

  15. C.E. Price, Mater. Perform. 34 (1995) 87.

    Google Scholar 

  16. A.M. Fenelon and C.B.B. Breslin, J. Appl. Electrochem. 31 (2001) 509.

    Google Scholar 

  17. K. Balakrishnan and V.K. Venkatesan, Werkst. Korros. 29 (1978) 113.

    Google Scholar 

  18. V.N. Chervyakov, A.P. Pchel'nikov and V.V. Losev, Elektrokhimiya (Russia) 27 (1991) 1647.

    Google Scholar 

  19. H.M. Shalaby, A. Al-Hashem, M. Lowther and J. Al-Besharah (Eds), ‘Industrial Corrosion and Corrosion Control Technology’ (Kuwait Institute for Scientific Research, Kuwait, 1996).

    Google Scholar 

  20. Samuel J. Lawrence and Richard L. Bodnar, Adv. Mater. Proces. (Feb. 1997) 29.

  21. N. De Zoubov, C. Vanleugenhaghe and M. Pourbaix, in M. Pourbaix (Ed), ‘Atlas of Electrochemical Equilibria in Aqueous Media' (NACE, Houston, 1974), p. 384.

    Google Scholar 

  22. N. De Zoulov and M. Pourbaix, in[21], p. 406.

    Google Scholar 

  23. M.E. Walton and P.A. Brook, Corros. Sci. 17 (1977) 593.

    Google Scholar 

  24. L.H. Jenkins, J. Electrochem. Soc. 117 (1970) 630.

    Google Scholar 

  25. A.L. Bacarella and J.C. Griess, J. Electrochem. Soc. 120 (1973) 459.

    Google Scholar 

  26. J.O'M. Bockris, B.T. Rubin, A. Despic and B. Lovrecek, Electrochim. Acta 17 (1972) 973.

    Google Scholar 

  27. C. Kato, B.G. Ateya, J.E. Castle and H.W. Pickering, J. Electrochem. Soc. 127 (1980) 1881.

    Google Scholar 

  28. C.H. Bonfiglio, A.C. Albaya and A.O. Cobo, Corros. Sci. 13 (1973) 717.

    Google Scholar 

  29. D. Tromans and G. Li, Electrochem. Sol. St. Lett. 5 (2002) B5.

    Google Scholar 

  30. J.A. Dean, (Ed), ‘Lange’s Handbook of Chemistry’ (McGraw-Hill, New York, 14th edn, 1992), p. 8.83.

    Google Scholar 

  31. F.M. Al-Kharafi and B.G. Ateya, J. Electrochem. Soc. 149 (2002) B206.

    Google Scholar 

  32. H.W. Pickering, J. Electrochem. Soc. 115 (1968) 690.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.M. Al-Kharafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Kharafi, F., Ateya, B. & Allah, R.A. Selective dissolution of brass in salt water. Journal of Applied Electrochemistry 34, 47–53 (2004). https://doi.org/10.1023/B:JACH.0000005616.41240.d0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000005616.41240.d0

Navigation