Skip to main content
Log in

Experimental determination of the electrochemical properties of bismuth chloride in eutectic LiCl–KCl and LiCl–KCl–CaCl2 molten salts

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Bismuth has been investigated as a potential liquid electrode for molten salt electrorefining, but the electrochemical behavior of Bi3+/Bi redox couple has received scant attention in LiCl–KCl and LiCl–KCl–CaCl2 eutectics. Electroanalytical techniques were used to determine properties of Bi3+/Bi. Diffusivities of 6.71 and 8.93 × 10−6 cm2 s−1 and standard apparent potentials of 0.1166 and 0.1187 V versus Ag/AgCl (4.75 mol%) were recommended for BiCl3 in LiCl–KCl and LiCl–KCl–CaCl2 eutectics, respectively, at 680 ± 3.1 K. The ICP-MS analysis of BiCl3 content limited the accuracy of the results. The reliability of the results improved with a more thorough drying procedure for CaCl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Plambeck JA (1967) Electromotive force series in molten salts. J Chem Eng Data 12:77–82. https://doi.org/10.1021/je60032a023

    Article  CAS  Google Scholar 

  2. Carlin RT, Osteryoung RA (1989) Deposition studies of lithium and bismuth at tungsten microelectrodes in LiCl: KCl eutectic. J Electrochem Soc 136:1249–1255. https://doi.org/10.1149/1.2096900

    Article  CAS  Google Scholar 

  3. Chipman G, Johnson B, Choi S et al (2023) Determination of a surrogate for plutonium electrorefining. J Nucl Mater 586:154680. https://doi.org/10.1016/j.jnucmat.2023.154680

    Article  CAS  Google Scholar 

  4. Fredrickson GL, Yoo T-S (2020) Liquid cadmium cathode performance model based on the equilibrium behaviors of U and Pu in molten LiCl–KCl/Cd system at 500°C. J Nucl Mater 528:151883. https://doi.org/10.1016/j.jnucmat.2019.151883

    Article  CAS  Google Scholar 

  5. Yin T, Liu Y, Yang D et al (2020) Thermodynamics and kinetics properties of lanthanides (La, Ce, Pr, Nd) on liquid bismuth electrode in LiCl–KCl molten salt. J Electrochem Soc 167:122507. https://doi.org/10.1149/1945-7111/abb0f4

    Article  CAS  Google Scholar 

  6. Yang D-W, Liu Y-L, Yin T-Q et al (2020) Application of binary Ga–Al alloy cathode in U separation from Ce: the possibility in pyroprocessing of spent nuclear fuel. Electrochim Acta 353:136449. https://doi.org/10.1016/j.electacta.2020.136449

    Article  CAS  Google Scholar 

  7. Koyama T, Iizuka M (2015) 18—Pyrochemical fuel cycle technologies for processing of spent nuclear fuels: developments in Japan. In: Taylor R (ed) Reprocessing and recycling of spent nuclear fuel. Woodhead Publishing, Oxford, pp 457–519

    Chapter  Google Scholar 

  8. Lewin RG, Harrison MT (2015) 15—International developments in electrorefining technologies for pyrochemical processing of spent nuclear fuels. In: Taylor R (ed) Reprocessing and recycling of spent nuclear fuel. Woodhead Publishing, Oxford, pp 373–413

    Chapter  Google Scholar 

  9. Zhang H, Du Q, Du X et al (2023) Selective extraction of Sm from LiCl–KCl molten salt into wasteforms via liquid bismuth. Sep Purif Technol 313:123441. https://doi.org/10.1016/j.seppur.2023.123441

    Article  CAS  Google Scholar 

  10. Yoon J-H, Kim S-H, Kim G-Y et al (2013) A study on the electrodeposition of uranium using a liquid cadmium cathode at 440℃ and 500℃. J Nucl Fuel Cycle Waste Technol (JNFCWT) 11:199–206. https://doi.org/10.7733/jnfcwt-k.2013.11.3.199

  11. Kim S-H, Yoon D-S, You Y-J et al (2009) In-situ observation of a dendrite growth in an aqueous condition and a uranium deposition into a liquid cadmium cathode in an electrowinning system. J Nucl Mater 385:196–199. https://doi.org/10.1016/j.jnucmat.2008.10.019

    Article  CAS  Google Scholar 

  12. Yasuda K, Nohira T, Ogata YH, Ito Y (2005) Electrochemical window of molten LiCl–KCl–CaCl2 and the Ag+/Ag reference electrode. Electrochim Acta 51:561–565. https://doi.org/10.1016/j.electacta.2005.05.014

    Article  CAS  Google Scholar 

  13. Sri Maha Vishnu D, Sanil N, Mohandas KS, Nagarajan K (2016) Electrochemical characterisation of CaCl2 deficient LiCl–KCl–CaCl2 eutectic melt and electro-deoxidation of solid UO2. J Nucl Mater 470:179–186. https://doi.org/10.1016/j.jnucmat.2015.12.003

    Article  CAS  Google Scholar 

  14. The American Ceramic Society and the National Institute of Standards and Technology (2023) Phase equilibria diagrams online database (NIST standard reference database 31). In: Figure number 16819. https://www.nist.gov/srd/nist-standard-reference-database-31

  15. Yin T, Liu K, Liu Y et al (2018) Electrochemical and thermodynamic properties of uranium on the liquid bismuth electrode in LiCl–KCl eutectic. J Electrochem Soc 165:D722. https://doi.org/10.1149/2.0571814jes

    Article  CAS  Google Scholar 

  16. Arkhipov PA, Zaikov YP, Khalimullina YR, Arkhipov SP (2021) Electrochemical production of bismuth in the KCl–PbCl2 melt. Materials 14:5653. https://doi.org/10.3390/ma14195653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang S, Liu K, Liu Y et al (2019) Electrochemical behavior of Th(IV) on the bismuth electrode in LiCl–KCl eutectic. J Nucl Mater 523:268–275. https://doi.org/10.1016/j.jnucmat.2019.06.008

    Article  CAS  Google Scholar 

  18. Serp J, Lefebvre P, Malmbeck R et al (2005) Separation of plutonium from lanthanum by electrolysis in LiCl–KCl onto molten bismuth electrode. J Nucl Mater 340:266–270. https://doi.org/10.1016/j.jnucmat.2004.12.004

    Article  CAS  Google Scholar 

  19. Kim BK, Park BG (2022) Electrochemical behaviors of Bi3+ ions on inert tungsten or on liquid Bi pool in the molten LiCl–KCl eutectic. J Nucl Fuel Cycle Waste Technol 20:33–41. https://doi.org/10.7733/jnfcwt.2022.004

  20. Castrillejo Y, Haarberg GM, Palmero S et al (1994) Chemical and electrochemical behaviour of BiCl3 in a PbCl2 + KCl equimolar mixture at 475°C. J Electroanal Chem 373:149–155. https://doi.org/10.1016/0022-0728(94)03313-7

    Article  CAS  Google Scholar 

  21. Laitinen HA, Liu CH, Ferguson WS (1958) Polarography of metal ions in fused lithium chloride-potassium chloride eutectic. Anal Chem 30:1266–1270. https://doi.org/10.1021/ac60139a023

    Article  CAS  Google Scholar 

  22. Laitinen HA, Tischer RP, Roe DK (1960) Exchange current measurements in KCl–LiCl eutectic melt. J Electrochem Soc 107:546. https://doi.org/10.1149/1.2427740

    Article  CAS  Google Scholar 

  23. Schvaneveldt M, Fuller R, Rappleye D (2022) Electroanalytical measurements of lanthanum (III) chloride in molten calcium chloride and molten calcium chloride and lithium chloride. J Electroanal Chem 918:116442. https://doi.org/10.1016/j.jelechem.2022.116442

    Article  CAS  Google Scholar 

  24. Schvaneveldt M (2022) In-situ chlorine gas generation for chlorination and purification of rare earth and actinide metals. Theses and dissertations

  25. Masset PJ (2009) Thermogravimetric study of the dehydration reaction of LiCl·H2O. J Therm Anal Calorim 96:439–441. https://doi.org/10.1007/s10973-008-9399-y

    Article  CAS  Google Scholar 

  26. Molenda M, Stengler J, Linder M, Wörner A (2013) Reversible hydration behavior of CaCl2 at high H2O partial pressures for thermochemical energy storage. Thermochim Acta 560:76–81. https://doi.org/10.1016/j.tca.2013.03.020

    Article  CAS  Google Scholar 

  27. Shum R, Fuller M, Williams T, Rappleye D (2023) Electrochemical investigation of moisture byproducts in molten calcium chloride

  28. Yang L, Hudson RG (1959) Some investigations of the Ag/AgCl in LiCl–KCl eutectic reference electrode. J Electrochem Soc 106:986. https://doi.org/10.1149/1.2427195

    Article  CAS  Google Scholar 

  29. Yoon S, Kang D, Sohn S et al (2020) Reference electrode at molten salt: a comparative analysis of electroceramic membranes. J Nucl Fuel Cycle Waste Technol 18:143–155. https://doi.org/10.7733/jnfcwt.2020.18.2.143

    Article  Google Scholar 

  30. Agatemor C, Beauchemin D (2011) Matrix effects in inductively coupled plasma mass spectrometry: a review. Anal Chim Acta 706:66–83. https://doi.org/10.1016/j.aca.2011.08.027

    Article  CAS  PubMed  Google Scholar 

  31. Medvedev NS, Shaverina AV, Tsygankova AR, Saprykin AI (2018) Comparison of analytical performances of inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry for trace analysis of bismuth and bismuth oxide. Spectrochim Acta Part B 142:23–28. https://doi.org/10.1016/j.sab.2018.01.017

    Article  CAS  Google Scholar 

  32. Wilschefski SC, Baxter MR (2019) Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Clin Biochem Rev 40:115–133. https://doi.org/10.33176/AACB-19-00024

  33. Van Artsdalen ER, Yaffe IS (1955) Electrical conductance and density of molten salt systems: KCl–LiCl, KCl–NaCl and KCl–KI. J Phys Chem 59:118–127. https://doi.org/10.1021/j150524a007

    Article  Google Scholar 

  34. Robelin C, Chartrand P, Eriksson G (2007) A density model for multicomponent liquids based on the modified quasichemical model: application to the NaCl–KCl–MgCl2–CaCl2 system. Metall Mater Trans B 38:869–879. https://doi.org/10.1007/s11663-007-9090-x

    Article  CAS  Google Scholar 

  35. Janz GJ, Tomkins RPT, Allen CB et al (1975) Molten salts: volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data 4:871–1178. https://doi.org/10.1063/1.555527

    Article  CAS  Google Scholar 

  36. Rappleye D, Horvath D, Wang Z et al (2016) Methods for determining the working electrode interfacial area for electroanalytical measurements of metal ions in molten LiCl–KCl. ECS Trans 75:79. https://doi.org/10.1149/07515.0079ecst

    Article  CAS  Google Scholar 

  37. Shen M, Li B, Yu J (2012) Investigation on electrochemical removal of CaCl2 from LiCl–KCl melts. Electrochim Acta 62:153–157. https://doi.org/10.1016/j.electacta.2011.12.007

    Article  CAS  Google Scholar 

  38. Zhang C, Rappleye D, Nelson A et al (2021) Electroanalytical measurements of oxide ions in molten CaCl2 on W electrode. J Electrochem Soc 168:097502. https://doi.org/10.1149/1945-7111/ac208e

    Article  CAS  Google Scholar 

  39. Kondo H, Asaki Z, Kondo Y (1978) Hydrolysis of fused calcium chloride at high temperature. Metall Trans B 9:477–483. https://doi.org/10.1007/BF02654424

    Article  Google Scholar 

  40. Kim H, Smith N, Kumar K, Lichtenstein T (2016) Electrochemical separation of barium into liquid bismuth by controlling deposition potentials. Electrochim Acta 220:237–244. https://doi.org/10.1016/j.electacta.2016.10.083

    Article  CAS  Google Scholar 

  41. Gschneidner KA, Calderwood FW (2016) ASM alloy phase diagram database. https://www.asminternational.org/materials-resources/online-databases/-/journal_content/56/10192/15469013/DATABASE. Accessed 28 Jan 2023

  42. Fatouros N, Krulic D (2013) Analysis of the square wave voltammetry for reversible metal deposition on a foreign substrate—experimental study of silver deposition on gold. J Electroanal Chem 706:76–85. https://doi.org/10.1016/j.jelechem.2013.07.019

    Article  CAS  Google Scholar 

  43. Fuller R, Williams T, Schvaneveldt M, Rappleye D (2022) A comparison of square-wave voltammetry models to determine the number of electrons exchanged in metal deposition. Electrochim Acta 414:140220. https://doi.org/10.1016/j.electacta.2022.140220

    Article  CAS  Google Scholar 

  44. Yoon D, Baggett A, Phongikaroon S et al (2019) Fundamental data acquisition toward silver-silver chloride reference electrode. J Electrochem Soc 166:E159. https://doi.org/10.1149/2.0721906jes

    Article  CAS  Google Scholar 

  45. Zhang J (2014) Electrochemistry of actinides and fission products in molten salts—data review. J Nucl Mater 447:271–284. https://doi.org/10.1016/j.jnucmat.2013.12.017

    Article  CAS  Google Scholar 

  46. Tylka MM, Willit JL, Prakash J, Williamson MA (2015) Application of voltammetry for quantitative analysis of actinides in molten salts. J Electrochem Soc 162:H852–H859. https://doi.org/10.1149/2.0281512jes

    Article  CAS  Google Scholar 

  47. Rappleye D, Jeong S-M, Simpson M (2016) Electroanalytical measurements of binary-analyte mixtures in molten LiCl–KCl eutectic: gadolinium(III)- and lanthanum(III)-chloride. J Electrochem Soc 163:B507. https://doi.org/10.1149/2.1011609jes

    Article  CAS  Google Scholar 

  48. Williams T, Fuller R, Vann C, Rappleye D (2023) Semi-differentiation of reversible, soluble-insoluble potential sweep voltammograms. J Electrochem Soc 170:042502. https://doi.org/10.1149/1945-7111/accc59

    Article  CAS  Google Scholar 

  49. Krulic D, Fatouros N, Liu D (2015) A complementary survey of staircase voltammetry with metal ion deposition on macroelectrodes. J Electroanal Chem 754:30–39. https://doi.org/10.1016/j.jelechem.2015.06.012

    Article  CAS  Google Scholar 

  50. Rappleye DS, Fuller RG (2023) Bringing the analysis of electrodeposition signals in voltammetry out of the shadows. J Electrochem Soc 170:063505. https://doi.org/10.1149/1945-7111/acd879

    Article  CAS  Google Scholar 

  51. Berzins T, Delahay P (1953) Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes. J Am Chem Soc 75:555–559. https://doi.org/10.1021/ja01099a013

    Article  CAS  Google Scholar 

  52. Delahay P (1953) Theory of irreversible waves in oscillographic polarography. J Am Chem Soc 75:1190–1196. https://doi.org/10.1021/ja01101a054

    Article  CAS  Google Scholar 

  53. Lim KH, Park S, Yun J-I (2015) Study on exchange current density and transfer coefficient of uranium in LiCl–KCl molten salt. J Electrochem Soc 162:E334–E337. https://doi.org/10.1149/2.0571514jes

    Article  CAS  Google Scholar 

  54. Yoon D, Phongikaroon S (2017) Measurement and analysis of exchange current density for U/U3+ reaction in LiCl–KCl eutectic salt via various electrochemical techniques. Electrochim Acta 227:170–179. https://doi.org/10.1016/j.electacta.2017.01.011

    Article  CAS  Google Scholar 

  55. Rappleye D, Simpson MF (2017) Application of the rotating cylinder electrode in molten LiCl–KCl eutectic containing uranium(III)- and magnesium(II)-chloride. J Nucl Mater 487:362–372. https://doi.org/10.1016/j.jnucmat.2017.02.037

    Article  CAS  Google Scholar 

  56. Rappleye D (2023) Voltammetry

  57. Heerman L, Tarallo A (1999) Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth. J Electroanal Chem 470:70–76. https://doi.org/10.1016/S0022-0728(99)00221-1

    Article  CAS  Google Scholar 

  58. Tylka MM, Willit JL, Williamson MA (2017) Electrochemical nucleation and growth of uranium and plutonium from molten salts. J Electrochem Soc 164:H5327. https://doi.org/10.1149/2.0471708jes

    Article  CAS  Google Scholar 

  59. Williams T, Shum R, Rappleye D (2021) Concentration measurements in molten chloride salts using electrochemical methods. J Electrochem Soc 168:123510. https://doi.org/10.1149/1945-7111/ac436a

    Article  CAS  Google Scholar 

  60. Bermejo MR, Gómez J, Medina J et al (2006) The electrochemistry of gadolinium in the eutectic LiCl–KCl on W and Al electrodes. J Electroanal Chem 588:253–266. https://doi.org/10.1016/j.jelechem.2005.12.031

    Article  CAS  Google Scholar 

  61. Lantelme F, Berghoute Y (1999) Electrochemical studies of LaCl3 and GdCl3 dissolved in fused LiCl–KCl. J Electrochem Soc 146:4137–4144. https://doi.org/10.1149/1.1392604

    Article  CAS  Google Scholar 

  62. Bermejo MR, Gómez J, Martínez AM et al (2008) Electrochemistry of terbium in the eutectic LiCl–KCl. Electrochim Acta 53:5106–5112. https://doi.org/10.1016/j.electacta.2008.02.058

    Article  CAS  Google Scholar 

  63. Caravaca C, de Córdoba G, Tomás MJ, Rosado M (2007) Electrochemical behaviour of gadolinium ion in molten LiCl–KCl eutectic. J Nucl Mater 360:25–31. https://doi.org/10.1016/j.jnucmat.2006.08.009

    Article  CAS  Google Scholar 

  64. Deen WM (2012) Analysis of transport phenomena, 2nd edn. Oxford University Press Inc., New York

    Google Scholar 

  65. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  66. Bouarab AF, Harvey J-P, Robelin C (2021) Viscosity models for ionic liquids and their mixtures. Phys Chem Chem Phys 23:733–752. https://doi.org/10.1039/D0CP05787H

  67. Zhao D, Yan L, Jiang T et al (2023) On the viscosity of molten salts and molten salt mixtures and its temperature dependence. J Energy Storage 61:106707. https://doi.org/10.1016/j.est.2023.106707

    Article  Google Scholar 

  68. The American Ceramic Society and the National Institute of Standards and Technology (2023) Phase equilibria diagrams online database (NIST standard reference database 31). In: Figure numbers 16814 and 16114. https://www.nist.gov/srd/nist-standard-reference-database-31

  69. Ackermann MN (1998) Why is bismuth subchloride soluble in acid? J Chem Educ 75:523. https://doi.org/10.1021/ed075p523

    Article  CAS  Google Scholar 

  70. Diemente D (1997) Why is bismuth subchloride soluble in acid? J Chem Educ 74:398. https://doi.org/10.1021/ed074p398

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Funding

Lawrence Livermore National Laboratory

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Chipman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipman, G., Johnson, B., Vann, C. et al. Experimental determination of the electrochemical properties of bismuth chloride in eutectic LiCl–KCl and LiCl–KCl–CaCl2 molten salts. J Radioanal Nucl Chem 333, 1119–1135 (2024). https://doi.org/10.1007/s10967-024-09354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09354-4

Keywords

Navigation