Skip to main content
Log in

Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A bacterial strain ZL5, capable of growing on phenanthrene as a sole carbon and energy source but not naphthalene, was isolated by selective enrichment from crude-oil-contaminated soil of Liaohe Oil Field in China. The isolate was identified as a Sphingomonas sp. strain on the basis of 16S ribosomal DNA analysis. Strain ZL5 grown on phenanthrene exhibited catechol 2,3-dioxygenase (C23O) activity but no catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxygenase activities. This suggests that the mode of cleavage of phenanthrene by strain ZL5 could be meta via the intermediate catechol, which is different from the protocatechuate way of other two bacteria, Alcaligenes faecelis AFK2 and Nocardioides sp. strain KP7, also capable of growing on phenanthrene but not naphthalene. A resident plasmid (approximately 60 kb in size), designated as pZL, was detected from strain ZL5. Curing the plasmid with mitomycin C and transferring the plasmid to E. coli revealed that pZL was responsible for polycyclic aromatic hydrocarbons degradation. The C23O gene located on plasmid pZL was cloned and overexpressed in E. coli JM109(DE3). The ring-fission activity of the purified C23O from the recombinant E. coli on dihydroxylated aromatics was in order of catechol > 4-methylcatechol > 3-methylcatechol > 4-chlorocatechol ≫ 3,4-dihydroxyphenanthrene > 3-chlorocatechol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bezalel L, Hadar Y, Fu PP, Freeman JP & Cerniglia CE (1996) Metabolism of phenanthrene by the White Rot Fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62: 2547–2553

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Cain RB (1966) Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca & Flavobacterium. J. Gen. Micro-biol. 42: 219–235

    Google Scholar 

  • Chakrabarty AM (1972) Genetic basis of the biodegradation of salicylate in Pseudomonas. J. Bacteriol. 112: 815–823

    Google Scholar 

  • Cho JC & Kim SJ (2001) Detection of mega plasmid from polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. strain KS14. J. Mol. Microbiol. Biotechnol. 3: 503–506

    Google Scholar 

  • Crawford RL, Button SW & Chapman PJ (1975) Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J. Bacteriol. 121: 794–799

    Google Scholar 

  • Dunn N & Gunsalus IC (1973) Transmissible plasmids coding early enzyme of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114: 974–979

    Google Scholar 

  • Fuenmayor SL, Wild M, Boyes AL & Williams PA (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J. Bacteriol. 180: 2522–2530

    Google Scholar 

  • Grimm AC & Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic. J. Bacteriol. 181: 3310–3316

    Google Scholar 

  • Johnsen AR, Winding A, Karlson U & Roslev P (2002) Linking of microorganisms to phenanthrene metabolism in soil by analysis of (13)C-labeled cell lipids. Appl. Environ. Micro-biol. 68: 6106–6113

    Google Scholar 

  • Kado CI & Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365–1373

    Google Scholar 

  • Kanaly RA & Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bac-teria. J. Bacteriol. 182: 2059–2067

    Google Scholar 

  • Kang BS, Ha JY, Lim JC, Lee J, Kim CK, Min KR & Kim Y (1998) Structure of catechol 2,3-dioxygenase gene from Alcaligenes eutrophus 335. Biochem. Biophys. Res. Commun. 245: 791–796

    Google Scholar 

  • Kastner M & Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soil affected by the organic matrix of compost. Appl. Microbiol. Biotechnol. 44: 668–675

    Google Scholar 

  • Kiyohara H, Nagao K & Kouno K (1982a) Phenanthrene-degrading phenotype of Alcaligenes faecelis AFK2. Appl. Environ. Microbiol. 43: 458–461

    Google Scholar 

  • Kiyohara H, Nagao K & Yano K (1982b) Rapid screening for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl. Environ. Microbiol. 43: 454–457

    Google Scholar 

  • Kojima Y, Itada N & Hayaishi O (1961) Metapyrocatechase: a new catechol-cleaving enzyme. J. Biol. Chem. 236: 2223–2228

    Google Scholar 

  • LaVoce EI, Hecht SS, Bedenko V & Hoffman D (1982) Identification of the mutagenic metabolites of fluorene, 2-methylfluorene, and 3-methyl-fluoranthene. Carcinogenesis 3: 841–846

    Google Scholar 

  • Lotufo GR (1997) Toxicity of sediment-associated PAHs to an estuarine copepod: effects on survival, feeding, reproduction and behaviour. Mar. Environ. Res. 44: 149–166

    Google Scholar 

  • Meyer S, Moser R, Neef A, Stahl U & Kampfer P (1999) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiol. 145: 1731–1741

    Google Scholar 

  • Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK & Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181: 1585–1602

    Google Scholar 

  • Saito A, Iwabuchi T & Harayama S (2000) A novel phenan-threne dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. J. Bacteriol. 182: 2134–2141

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanseverino J, Applegate BM, Henry King JM & Sayler GS (1993) Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol. 59: 1931–1937

    Google Scholar 

  • Stanier RY & Ingraham JL (1954) Protocatechuic acid oxidase. J. Biol. Chem. 210: 799–808

    Google Scholar 

  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S & Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydro-genase in Pseudomonas putida OUS82. J. Bacteriol. 176: 2444–2449

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA & Lane DJ (1991) 16s ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–703

    Google Scholar 

  • Wheelis ML, Palleroni NJ & Stanier RY (1967) The metabolism of aromatic acids by Pseudomonas testeroni and P. acidivorans. Arch. Mikrobiol. 59: 302–314

    Google Scholar 

  • Yrjala K, Suomalainen S & Suhonen EL (1998) Characterization and reclassification of an aromatic- and chloroaromatic-degrading Pseudomonas sp., sttain HV3, as Sphingomonas sp. HV3. Int J. Syst. Bacteriol. 48: 1057–1062

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhang, J. & Zhang, Z. Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation 15, 205–212 (2004). https://doi.org/10.1023/B:BIOD.0000026579.38741.e1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000026579.38741.e1

Navigation