Astrophysics and Space Science

, Volume 291, Issue 1, pp 27–56 | Cite as

Sensitivity of the C and O production on the 3α rate

  • H. Schlattl
  • A. Heger
  • H. Oberhummer
  • T. Rauscher
  • A. Csótó
Article

Abstract

We investigate the dependence of the carbon and oxygen production in stars on the 3α rate by varying the energy of the 0+2-state of 12C and determine the resulting yields for a selection of low-mass, intermediate-mass and massive stars. The yields are obtained using modern stellar evolution codes that follow the entire evolution of massive stars, including the supernova explosion, and consider in detail the 3rd dredge-up process during the thermally pulsating asymptotic giant branch of low-mass and intermediate-mass stars. Our results show that the C and O production in massive stars depends strongly on the initial mass, and that it is crucial to follow the entire evolution. A rather strong C production during the He-shell flashes compared to quiescent He burning leads to a lower sensitivity of the C and O production in low-mass and intermediate-mass stars on the 3α-rate than predicted in our previous work. In particular, the C production of intermediate-mass stars seems to have a maximum close to the actual value of the 0+2 energy level of 12C.

stars: abundances late-type evolution interiors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelberger, E.G., Austin, S.M., Bahcall, J.N., Balantekin, A.B., Bogaert, G. et al.: 1998, Rev. Mod. Phys. 70, 1265.CrossRefADSGoogle Scholar
  2. Alexander, D.R. and Fergusson, J.W.: 1994, ApJ 437, 879.CrossRefADSGoogle Scholar
  3. Böhm-Vitense, E.: 1958, Z. Astrophys. 46, 108.ADSGoogle Scholar
  4. Buchmann, L.: 1996, ApJ 468, 127.CrossRefADSGoogle Scholar
  5. Calmet, X. and Fritsch, H.: 2002, Eur. Phys. J. C 24, 639.CrossRefADSGoogle Scholar
  6. Cassisi, S., Salaris, M. and Irwin, A.W.: 2003a, ApJ 588, 862.CrossRefADSGoogle Scholar
  7. Cassisi, S., Schlattl, H., Salaris, M. and Weiss, A.: 2003b, ApJ 582, L43.CrossRefADSGoogle Scholar
  8. Caughlan, G.R., Fowler, W.A., Harris, M.J. and Zimmerman, B.A.: 1985, Atomic Data Nuc. Data Tables 32, 197.CrossRefADSGoogle Scholar
  9. Chacko, Z., Grojean, C. and Perelstein, M.: 2002, Fine Structure Constant Variation from a Late Phase Transition, Saclay T02/038, hep-ph/0204142.Google Scholar
  10. Cook, C.W., Fowler, W.A., Lauritsen, C.C. and Lauritsen, T.: 1957, Phys. Rev. 107, 508.CrossRefADSGoogle Scholar
  11. Dent, T. and Fairbairn, M.: 2003, Nucl. Phys. B 653, 256.CrossRefADSGoogle Scholar
  12. Faulkner, D.J.: 1970, ApJ 162, 513.CrossRefADSGoogle Scholar
  13. Finzi, A. and Wolf, R.A.: 1971, A&A 11, 418.ADSGoogle Scholar
  14. Fiorentini, G. and Ricci, B.: 2002. In: Proc. of ESO-CERN-ESA Symposium on Astronomy, Cosmology and Fundamental Physics, Garching, Germany, 4- 7 March 2002.Google Scholar
  15. Firestone, R.B., Shirley, V.S., Baglin, C.M., Chu, S.Y.F. and Zipkin, J.: 1996, Table of Isotopes, John Wiley & Sons, Inc., New York, eighth edition.Google Scholar
  16. Heger, A., Langer, N. and Woosley, S.E.: 2000, ApJ 528, 368.CrossRefADSGoogle Scholar
  17. Heger, A., Woosley, S.E., Rauscher, T., Hoffman, R.D. and Boyes, M.M.: 2002, New Astron. Rev. 46, 463.CrossRefADSGoogle Scholar
  18. Henry, R.B.C., Kwitter, K.B. and Howard, J.W.: 1996, ApJ 458, 215.CrossRefADSGoogle Scholar
  19. Hoyle, F.: 1954, ApJS 1, 121.CrossRefADSGoogle Scholar
  20. Hoyle, F., Dunbar, D.N.F., Wenzel, W.A. and Whaling, W.: 1953, Phys. Rev. 92, 1095.Google Scholar
  21. Iglesias, C.A. and Rogers, F.J.: 1996, ApJ 464, 943.CrossRefADSGoogle Scholar
  22. Janka, H.-T., Buras, R., Kifonidis, K., Rampp, M. and Plewa, T.: 2002. In: W. Hillebrandt and B. Leibundgut (eds.), From Twilight to Highlight: The Physics of Supernovae, Springer Verlag, Berlin, in press.Google Scholar
  23. Kippenhahn, R. and Weigert, A.: 1990, Stellar Structure and Evolution, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  24. Kunz, R., Fey, M., Jaeger, M., Mayer, A., Hammer, J.W. et al.: 2002, ApJ 567, 643.CrossRefADSGoogle Scholar
  25. Kunz, R., Jaeger, M., Mayer, A., Hammer, J.W., Staudt, G. et al.: 2001, Phys. Rev. Lett. 86, 3244.CrossRefADSGoogle Scholar
  26. Langacker, P., Segrè , G. and Strassler, M.J.: 2002, Phys. Lett. B 528, 121.ADSGoogle Scholar
  27. Langanke, K., Wiescher, M. and Thielemann, F.-K.: 1986, Z. Phys. A 324, 147.Google Scholar
  28. Langer, N., El Eid, M. and Fricke, K.J.: 1985, A&A 145, 179.ADSGoogle Scholar
  29. Liang, Y.C., Zhao, G. and Shi, J.R.: 2001, A&A 374, 936.ADSGoogle Scholar
  30. Limongi, M., Straniero, O. and Chieffi, A.: 2000, ApJS 129, 625.CrossRefADSGoogle Scholar
  31. Livio, M., Hollowell, D., Weiss, A. and Truran, J.W.: 1989, Nature 340, 281.CrossRefADSGoogle Scholar
  32. Marigo, P., Bressan, A. and Chiosi, C.: 1996, A&A 313, 545.ADSGoogle Scholar
  33. Murphy, M.T., Webb, J.K., Flambaum, V.V., Drinkwater, M.J., Combes, F. and Wiklind, T.: 2001, MNRAS 327, 1244.CrossRefADSGoogle Scholar
  34. Nieuwenhuijzen, H. and de Jager, C.: 1990, A&A 231, 134.ADSGoogle Scholar
  35. Oberhummer, H., Csó tó , A., Fairbairn, M., Schlattl, H. and Sharma, M.M.: 2003, Nucl. Phys. A 719, 283c.ADSGoogle Scholar
  36. Oberhummer, H., Csó tó , A. and Schlattl, H.: 2000, Sci 289, 88 (Paper I).CrossRefADSGoogle Scholar
  37. Oberhummer, H., Csó tó , A. and Schlattl, H.: 2001, Nucl. Phys. A 689, 269c.ADSGoogle Scholar
  38. Rauscher, T., Heger, A., Hoffman, R.D. and Woosley, S.E.: 2002, ApJ 576, 323.CrossRefADSGoogle Scholar
  39. Reimers, D.: 1975, Mem. Soc. Roy. Sci. Liè ge 8, 369.ADSGoogle Scholar
  40. Rogers, F.J., Swenson, F.J. and Iglesias, C.A.: 1996, ApJ 456, 902.CrossRefADSGoogle Scholar
  41. Schlattl, H.: 1999, Ph.D. thesis, Technical University Munich.Google Scholar
  42. Schlattl, H.: 2002, A&A 395, 85.CrossRefADSGoogle Scholar
  43. Schlattl, H., Cassisi, S., Salaris, M. and Weiss, A.: 2001, ApJ 559, 1082.CrossRefADSGoogle Scholar
  44. Vassiliadis, E. and Wood, P.R.: 1993, ApJ 413, 641.CrossRefADSGoogle Scholar
  45. Wagenhuber, J. and Weiss, A.: 1994, A&A 286, 121.ADSGoogle Scholar
  46. Weaver, T.A. and Woosley, S.E.: 1993, Phys. Rept. 227, 65.CrossRefADSGoogle Scholar
  47. Weaver, T.A., Zimmermann, G.B. and Woosley, S.E.: 1978, ApJ 225, 1021.CrossRefADSGoogle Scholar
  48. Weiss, A. and Schlattl, H.: 2000, A&AS 144, 487.ADSGoogle Scholar
  49. Wood, P.R. and Faulkner, D.J.: 1986, ApJ 307, 659.CrossRefADSGoogle Scholar
  50. Woosley, S.E., Heger, A., Rauscher, T. and Hoffman, R.D.: 2003, Nucl. Phys. A 718, 3c.ADSGoogle Scholar
  51. Woosley, S.E., Heger, A. and Weaver, T.A.: 2002, Rev. Mod. Phys. 74, 1015.CrossRefADSGoogle Scholar
  52. Woosley, S.E. and Weaver, T.A.: 1995, ApJS 101, 181.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • H. Schlattl
    • 1
  • A. Heger
    • 2
    • 3
  • H. Oberhummer
    • 4
  • T. Rauscher
    • 5
  • A. Csótó
    • 6
  1. 1.Astrophysics Research InstituteLiverpool John Moores UniversityBirkenheadUK
  2. 2.Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoUSA
  3. 3.Theoretical Astrophysics DivisionLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Atominstitut of the Austrian Universities, Technische Universität WienAustria
  5. 5.Departement für Physik und AstronomieUniversität BaselBaselSwitzerland
  6. 6.Department of Atomic PhysicsEötvös UniversityBudapestHungary

Personalised recommendations