Skip to main content
Log in

Regional Distribution of Phospholipids and Polyphosphatidyl Inositides in the Rabbit's Spinal Cord

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The plasticity of the membrane phospholipids in general and stimulated phosphoinositides turnover in particular are the subjects in a variety of neural paradigms studying the molecular mechanisms of neuronal changes under normal and pathological conditions. The regional modifiability of phospholipids (SM, PC, PS, PI, PA + DG, PE), polyphosphatidylinositides (PI, PIP, PIP2) and diacylglycerol-dependent incorporation of CDP-choline into phosphatidylcholine in the gray matter, white matter, dorsal horns, intermediate zone and ventral horns of the rabbit's spinal cord was studied. We have found 1. a significant increase in the concentration of SM, PC, PS, DG + PA and PE in the white matter in comparison to the gray one, 2. the highest concentration of the outer membrane leaflet-bound phospholipids in the dorsal horns and the inner membrane phospholipids in the intermediate zone in comparison to the gray matter, 3. a substantial amount of labeled polyphosphatidylinositides (poly-PIs) in the spinal cord white matter with descending order PIP > PI > PIP2, 4. similar incorporation of myo-2-[3H]inositol into all poly-PIs in ventral horns and intermediate zone, but a different, lower incorporation into PI and PIP and higher into PIP2 in the dorsal horns, 5. higher diacylglycerol-dependent incorporation of CDP-choline into PC in the regionally undivided gray matter than in the white matter taken as a whole, 6. the high proportion of diacylglycerol-dependent incorporation of CDP-choline into PC in both the ventral and dorsal horns, whereas that in the intermediate zone remained low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sun, G. Y., and MacQuarrie, R. A. 1989. Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids: Arachidonic acid metabolism in the nervous system. Ann. NY. Acad. Sci. 559: 37–55.

    Google Scholar 

  2. Fisher, S. K., Doherty, F. J., and Rowe, C. E. 1982. Deacylation and acylation of phospholipids in nervous tissue, Pages 63–74, in Horrocks L. A., Ansell G. B., and Porcellati G., (eds), Phospholipids in the Nervous System Vol. 1, Raven Press, New York.

    Google Scholar 

  3. Nishizuka, Y. 1986. Studies and perspectives of protein kinase C. Science 233:305–312.

    Google Scholar 

  4. Mozzi, R., Andreoli, V., and Horrocks, L. A. 1993. Phosphatidylserine synthesis in rat cerebral cortex: effects of hypoxia, hypocapnia and development. Mol. Cell. Biochem. 126:101–107.

    Google Scholar 

  5. Berridge, M. J., and Irvine, R. F. 1989. Inositolphosphates and cell signalling. Nature 341:197–205.

    Google Scholar 

  6. Tanaka, Ch., and Nishizuka, Y. 1994. The protein kinase C family for neuronal signaling. Ann. Rev. Neurosci. 17:551–567.

    Google Scholar 

  7. Worley, P. F., Baraban, J. M., Colvin, J. S., and Snyder, S. H. 1987. Inositol trisphosphate receptor localization in brain: Variable stoichiometry with protein kinase C. Nature 325:159–161.

    Google Scholar 

  8. Lukáčová, N., and Maršala, J. 1996. Phosphoinositides and second messenger systems: Metabolism and location of phosphoinositides and Ca2+ release. Biologia 51:689–697.

    Google Scholar 

  9. Maršala, J., and Lukáčová, N. 1996. Identification and modifiability of inositol 1,4,5-trisphosphate receptors. An up-to-date review and critical appraisal. Biologia 51:698–704.

    Google Scholar 

  10. Maršala, M., Danielisová, V., Chavko, M., Horňáková, A., and Maršala, J. 1989. Improvement of energy state and basic modifications of neuropathological damage in rabbits as a result of graded postischemic spinal cord reoxygenation. Exp. Neurol. 105: 93–103.

    Google Scholar 

  11. Marsala, J., Sulla, I., Santa, M., Marsala, M., Zacharias, L., and Radonak, J. 1991. Mapping of the canine lumbosacral spinal cord neurons by Nauta method at the end of the early phase of paraplegia induced by ischemia and reperfusion. Neuroscience 45: 479–494.

    Google Scholar 

  12. Marsala, J., Marsala, M., Sulla, I., Burda, J., Galik, J., and Orendacova, J. 1994. Ischemia-induced delayed-onset paraplegia is accompanied by an unusual form of synaptic degeneration in the lumbosacral segments: an experimental light and electron microscopic study in dogs. Microsc. Res. Techniq. 28:226–242.

    Google Scholar 

  13. Follis, F., Scremin, O. U., Blisard, K. S., Scremin, A. M. E., Pett, S. B., Scott, W. J., Kessler, R. M., and Wernly, J. A. 1993. Selective vulnerability of white matter during spinal cord ischemia. J. Cereb. Blood Flow Metab. 13:170–178.

    Google Scholar 

  14. Zivin, J. A., DeGirolami, U., and Hurwitz, E. L. 1982. Spectrum of neurological deficits in experimental CNS ischemia. A quantitative study. Arch. Neurol. 39:408–412.

    Google Scholar 

  15. Halát, G., Lukáčová, N., Chavko, M., and Maršala, J. 1990. Effect of severe incomplete ischemia and postischaemic reperfusion on phospholipids and unesterified cholesterol in rabbit spinal cord. Physiol. Bohemoslov. 39:351–360.

    Google Scholar 

  16. Lukáčová, N., Halát, G., Chavko, M., and Maršala, J. 1996. Ischemia-reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipid profiles. Neurochem. Res. 21:875–879.

    Google Scholar 

  17. Worley, P. F., Baraban, J. M., and Snyder, S. H. 1989. Inositol 1,4,5-trisphosphate receptor binding: Autoradiographic localization in rat brain. J. Neurochem. 9:339–346.

    Google Scholar 

  18. Rodrigo, J., Suburo, A. M., Bentura, M. L., Fernández, T., Nakade, S., Mikoshiba, K., Martinez-Murillo, R., and Polak, J. M. 1993. Distribution of the inositol 1,4,5-trisphosphate receptor, P400 in adult rat brain. J. Comp. Neurol. 337:493–517.

    Google Scholar 

  19. Greenamyre, J. T., Young, A. B., and Penney, J. B. 1984. Quantitative autoradiographic distribution of L-[3H] glutamate-binding sites in rat central nervous system. J. Neurosci. 4:2133–2144.

    Google Scholar 

  20. van den Pol, A., and Gorcs, T. 1988. Glycine and glycine receptor immunoreactivity in brain and spinal cord. J. Neurosci. 8:472–492.

    Google Scholar 

  21. Seybold, V. S. 1986. Neurotransmitter receptor sites in the spinal cord, in Spinal Afferent Processing (Yaksh T. L., ed.), pp. 117–139. Plenum Press, New York.

    Google Scholar 

  22. Womack, M. D., MacDermott, A. B., and Jessell, T. M. 1988. Sensory transmitters regulate intracellular calcium in dorsal horn neurons. Nature 334:351–353.

    Google Scholar 

  23. Folch, L., Lees, M., and Sloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–503.

    Google Scholar 

  24. Rouser, G., Fleischer, S., and Yamamoto, A. 1970. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496.

    Google Scholar 

  25. Jolles, J., Wirtz, K. W. A., Shotman, P., and Gispen, V. H. 1979. Pituitary hormones influence phosphoinositide metabolism in the rat brain. FEBS Lett. 105:111–114.

    Google Scholar 

  26. Wei, E. P., Lamb, R. G., and Kontos, H. A. 1982. Increased phospholipase C activity after experimental brain injury. J. Neurosurg. 56:695–698.

    Google Scholar 

  27. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram of protein utilizing the principle of proteindye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  28. Svennerholm, L., Boström, K., Fredman, P., Jungbjer, B., Mânsson, J. E., and Rynmark, B. M. 1992. Membrane lipids of human peripheral nerve and spinal cord. Biochem. Biophys. Acta. 1128: 1–7.

    Google Scholar 

  29. Segler-Stahl, K., Demediuk, P., Castillo, R., Watts, C., and Moscatelli, E. A. 1985. Phospholipids of normal and experimentally injured spinal cord of the miniature pig. Neurochem. Res. 10:563–569.

    Google Scholar 

  30. Toews, A. D., Saunders, B. F., Blaker, W. D., and Morell, P. 1983. Differences in the kinetics of axonal transport for individual lipid classes in rat sciatic nerve. J. Neurochem. 40:555–562.

    Google Scholar 

  31. Toews, A. R., and Morrell, P. 1985. Axonal transport of phospholipids, Pages 299–314, in Horrocks L. A., (ed.), Phospholipids in the Nervous System Vol. 2, Raven Press, New York.

    Google Scholar 

  32. Rambourg, A., and Droz, B. 1980. Smooth endoplasmic reticulum and axonal transport. J. Neurochem. 35:16–25.

    Google Scholar 

  33. Droz, B., Di Giamberardino, L., and Koenig, H. L. 1981. Contribution of axonal transport to the renewal of myelin phospholipids in peripheral nerves. I. Quantitative radioautographic study. Brain Res. 219:57–71.

    Google Scholar 

  34. Holtzman, E., and Mercurio, A. M. 1980. Membrane circulation in neurons and photoreceptors: Some unresolved issues. Int. Rev. Cytol. 67:1–67.

    Google Scholar 

  35. Malatová, Ž., and Maršala, J. 1993. Cholinergic enzymes in spinal cord infarction. Biochemical and histochemical changes. Mol. Chem. Neuropathol. 19:283–295.

    Google Scholar 

  36. Futerman, A. M., Low, M. G., Michaelson, D. M., and Silman, I. 1985. Solubilization of membrane-bound acetylcholinesterase by a phosphatidylinositol-specific phospholipase C. J. Neurochem. 45:1487–1494.

    Google Scholar 

  37. Bruni, A., and Toffano, G. 1985. Influence of serine phospholipids on biogenic amine secretion in vivo and in vitro, in Phospholipids in the Nervous System, (Horrocks L. A., ed.), Vol. 2: pp. 21–29. Raven Press, New York.

    Google Scholar 

  38. Bleazard, L., Suthamnatpong, O., and Morris, R. 1995. Ultrastructural and dye coupling studies suggest that gap junctions contribute to spinal dorsal horn cellular communication, Soc. Neurosci. Abstr. Vol. 21: p. 382. Part 1.

    Google Scholar 

  39. Luttrell, B. M. 1993. The biological relevance of the binding of calcium ions by inositol phosphates. J. Biol. Chem. 268:1521–1524.

    Google Scholar 

  40. Dubner, R., Ruda, M. A., Miletic, V., Hoffert, M. J., Bennett, G. J., Nishikawa, N., and Doffield, J. 1983. Neural circuitry mediating nociception in the medullary and spinal dorsal horns, Pages 151–166, in Kruger L., and Liebeskind J. C., (eds), Advances in Pain Research and Therapy Vol. 6, Raven Press, New York.

    Google Scholar 

  41. Gobel, S. 1979. Neural circuitry in the substantia gelatinosa of Rolando: Anatomical insights, Pages 175–195, in Bonica J. J., Liebeskind J. C., and Albe-Fessard D. G., (eds), Advances in Pain Research and Therapy Vol. 3, Raven Press, New York.

    Google Scholar 

  42. Gobel, S., Falls, W. M., and Humphrey, E. 1981. Morphology of ultrafine primary axons in lamina 1 of the spinal dorsal horn: Candidates for the terminal axonal arbors with unmyelinated (C) axons. J. Neurosci. 1:1163–1179.

    Google Scholar 

  43. Light, A. R., and Perl, E. R. 1979. Differential termination of large-diameter and small-diameter primary afferent fibers in the spinal dorsal grey matter as indicated by labelling with horseradish peroxidase. J. Comp. Neurol. 186:117–139.

    Google Scholar 

  44. Igwe, O. J., and Ning, L. 1994. Regulation of the second-messenger systems in the rat spinal cord during prolonged peripheral inflammation. Pain 58:63–75.

    Google Scholar 

  45. Ferris, C. D., Huganir, R. L., Bredt, D. S., Cameron, A. M., and Snyder, S. H. 1991. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium/calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc. Natl. Acad. Sci. USA. 88:2232–2235.

    Google Scholar 

  46. Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H. 1992. Autophosphorylation of 1,4,5-trisphosphate receptors. J. Biol. Chem. 267:7036–7041.

    Google Scholar 

  47. Natarajan, V., and Schmid, H. H. O. 1987. Inositol phospholipid hydrolysis by rat sciatic nerve phospholipase C. J. Neurochem. 49:1878–1887.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukáčová, N., Maršala, J. Regional Distribution of Phospholipids and Polyphosphatidyl Inositides in the Rabbit's Spinal Cord. Neurochem Res 22, 687–692 (1997). https://doi.org/10.1023/A:1027397825584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027397825584

Navigation