Skip to main content
Log in

Lower active force generation and improved fatigue resistance in skeletal muscle from desmin deficient mice

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The mechanical effects of the intermediate filament protein desmin was examined in desmin deficient mice (Des−/−) and their wild type control (Des+/+). Active force generation was determined in intact soleus muscles and in skinned single fibres from soleus and psoas. A decreased force generation of skinned muscle fibres from Des−/− mice and a tendency towards decreased active force in intact soleus muscle were detected. Concentrations of the contractile protein actin and myosin were not altered in Des−/− muscles. Ca2+-sensitivity of skinned single fibres in Des−/− muscles was unchanged compared to Des+/+. Using a protocol with repeated short tetani an increased fatigue resistance was found in the intact soleus muscles from Des−/− mice. In conclusion, desmin intermediate filaments are required for optimal generation or transmission of active force in skeletal muscle. Although other studies have shown that the desmin intermediate filaments appear to influence Ca2+-handling, the Ca2+-sensitivity of the contractile filaments is not altered in skeletal muscle of Des−/− mice. Previous studies have reported a switch towards slower myosin isoforms in slow skeletal muscle of Des−/− mice. The increased fatigue resistance show that this change is reflected in the physiological function of the muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agbulut O, Li Z, Mouly V and Butler-Browne GS (1996) Analysis of skeletal and cardiac muscle from desmin knock-out and normal mice by high resolution separation of myosin heavy-chain iso-forms. Biol Cell 88: 131–135.

    Article  PubMed  CAS  Google Scholar 

  • Ariza A, Coll J, Fernandez-Figueras MT, Lopez MD, Mate JL, Garcia O, Fernandez-Vasalo A and Navas-Palacios JJ (1995) Desmin myopathy: a multisystem disorder involving skeletal, cardiac, and smooth muscle. Hum Pathol 26: 1032–1037.

    Article  PubMed  CAS  Google Scholar 

  • Balogh J, Merisckay M, Li Z, Paulin D and Arner A (2002) Hearts from mice lacking desmin have a myopathy with impaired active force generation and unaltered wall compliance. Cardiovasc Res 53: 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Bertini E, Bosman C, Ricci E, Servidei S, Boldrini R, Sabatelli M and Salviati G (1991) Neuromyopathy and restrictive cardiomyopathy with accumulation of intermediate, filaments: a clinical, morpho-logical and biochemical study. Acta Neuropathol (Berl) 81: 632–640.

    Article  CAS  Google Scholar 

  • Boriek AM, Capetanaki Y, Hwang W, Officer T, Badshah M, Rodarte J and Tidball JG (2001) Desmin integrates the three-dimensional mechanical properties of muscles. Am J Physiol Cell Physiol 280: C46–C52.

    PubMed  CAS  Google Scholar 

  • Edstrom L, Thornell LE and Eriksson A (1980) A new type of hereditary distal myopathy with characteristic sarcoplasmic bodies and intermediate (skeletin) filaments. J Neurol Sci 47: 171–190.

    Article  PubMed  CAS  Google Scholar 

  • Fabiato A (1981) Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticu-lum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol 78: 457–497.

    Article  PubMed  CAS  Google Scholar 

  • Fabiato A and Fabiato F (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 75: 463–505.

    CAS  Google Scholar 

  • Goldfarb LG, Park KY, Cervenakova L, Gorokhova S, Lee HS, Vasconcelos O, Nagle JW, Semino-Mora C, Sivakumar K and Dalakas MC (1998) Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 19: 402–403.

    Article  PubMed  CAS  Google Scholar 

  • Goldman YE, Hibberd MG and Trentham DR (1984) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5′-triphosphate. Cardiovasc J Physiol 354: 577–604.

    CAS  Google Scholar 

  • Hein S, Kostin S, Heling A, Maeno Y and Schaper J (2000) The role of the cytoskeleton in heart failure. Cardiovasc Res 45: 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Kay L, Li Z, Mericskay M, Olivares J, Tranqui L, Fontaine E, Tiivel T, Sikk P, Kaambre T, Samuel JL, Rappaport L, Usson Y, Leverve X, Paulin D and Saks VA (1997) Study of regulation of mitochondrial respiration in vivo. An analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim Biophys Acta 1322: 4l–59.

    Google Scholar 

  • Lacolley P, Challande P, Bogumaza S, Cohuet G, Laurent S, Boutouyrie P, Grimaud JA, Paulin D, Lamaziere JM and Li Z (2001) Mechanical properties and structure of carotid arteries in mice lacking desmin. Cardiovasc Res 51: 178–187.

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E (1982) Intermediate laments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem 51: 219–250.

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E, Granger BL, Gard DL, O' Connor CM, Breckler J, Price M and Danto SI (1982) Desmin-and vimentin-containing fila-ments and their role in the assembly of the Z disk in muscle cells. Cardiovasc Cold Spring Harb Symp Quant Biol 46(Pt 1): 351–378.

    Google Scholar 

  • Li Z, Colucci-Guyon E, Pincon-Raymond M, Mericskay M, Pournin S, Paulin D and Babinet C (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175: 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE, Babinet C and Paulin D (1997) Desmin is essential for the tensile strength and integrity of myo brils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. Cardiovasc J Cell Biol 139: 129–144.

    CAS  Google Scholar 

  • Li D, Tapscoft T, Gonzalez O, Burch PE, Quinones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL and Roberts R (1999) Desmin mutation responsible for idiopathic dilated cardiomyopathy. Cardiovasc Circulation 100: 461–464.

    CAS  Google Scholar 

  • Loufrani L, Matrougui K, Li Z, Levy B, Lacolley P, Paulin D and Henrion D (2002) Selective microvascular dysfunction in mice lacking the gene encoding for desmin. Faseb J 16: 117–119.

    PubMed  CAS  Google Scholar 

  • Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes AM and Capetanaki Y (1999) The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compro-mised systolic function. Cardiovasc J Mol Cell Cardiol 31: 2063–2076.

    Article  CAS  Google Scholar 

  • Milner DJ, Weitzer G, Tran D, Bradley A and Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. Cardiovasc J Cell Biol 134: 1255–1270.

    CAS  Google Scholar 

  • Munoz-Marmol AM, Strasser G, Isamat M, Coulombe PA, Yang Y, Roca X, Vela E, Mate JL, Coll J, Fernandez-Figueras MT, Navas-Palacios JJ, Ariza A and Fuchs E (1998) A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc Natl Acad Sci USA 95: 11312–11317.

    Article  PubMed  CAS  Google Scholar 

  • Price MG (1984) Molecular analysis of intermediate lament cyto-skeleton–a putative load-bearing structure. Am J Physiol 246: H566–H572.

    PubMed  CAS  Google Scholar 

  • Sam M, Shah S, Friden J, Milner DJ, Capetanaki Y and Lieber RL (2000) Desmin knockout muscles generate lower stress and are less vulnerable to injury compared with wild-type muscles. Am J Physiol Cell Physiol 279: C1116–C1122.

    PubMed  CAS  Google Scholar 

  • Sjo ¨berg G, Saavedra-Matiz CA, Rosen DR, Wijsman EM, Borg K, Horowitz SH and Sejersen T (1999) A missens mutation in the desmin rod domain is associated with autosomal dominant distal myopathy, and exerts a dominant negative effect on lament formation. Hum Mol Genet 8: 2191–2198.

    Article  CAS  Google Scholar 

  • Sjuve R, Arner A, Li Z, Mies B, Paulin D, Schmittner M and Small JV (1998) Mechanical alterations in smooth muscle from mice lacking desmin. Cardiovasc J Muscle Res Cell Motil 19: 415–429.

    Article  CAS  Google Scholar 

  • Thornell LE and Eriksson A (1981) Filament systems in the Purkinje bers of the heart. Am J Phsiol 241: H291–H305.

    CAS  Google Scholar 

  • Thornell L, Carlsson L, Li Z, Mericskay M and Paulin D (1997) Null mutation in the desmin gene gives rise to a cardiomyopathy. JMol Cell Cardiol 29: 2107–2124.

    Article  CAS  Google Scholar 

  • Tidball JG (1992) Desmin at myotendinous junctions. Exp Cell Res 199: 206–212.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Osinska H, Dorn GW, Nieman M, Lorenz JN, Gerdes AM, Witt S, Kimball T, Gulick J and Robbins J (2001) Mouse model of desmin-related cardiomyopathy. Circulation 103: 2402–2407.

    PubMed  CAS  Google Scholar 

  • Wede OK, Lo ¨fgren M, Li Z, Paulin D and Arner A (2002) Mechanical function of intermediate laments in arteries of different size examined using desmin deficient mice. Cardiovasc J Physiol 540: 941–949.

    CAS  Google Scholar 

  • Westerblad H, Lee JA, Lannergren J and Allen DG (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 261: C195–C209.

    PubMed  CAS  Google Scholar 

  • Wieneke S, Stele R, Li Z and Jockusch H (2000) Generation of tension by skinned fibers and intact skeletal muscles from desmin-defcient mice. Biochem Biophys Res Commun 278: 419–425.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, J., Li, Z., Paulin, D. et al. Lower active force generation and improved fatigue resistance in skeletal muscle from desmin deficient mice. J Muscle Res Cell Motil 24, 453–459 (2003). https://doi.org/10.1023/A:1027353930229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027353930229

Keywords

Navigation