Skip to main content
Log in

Changes in contractile and metabolic parameters of skeletal muscle as rats age from 3 to 12 months

  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Laboratory rats are considered mature at 3 months despite that musculoskeletal growth is still occurring. Changes in muscle physiological and biochemical characteristics during development from 3 months, however, are not well understood. Whole muscles and single skinned fibres from fast-twitch extensor digitorum longus (EDL) and predominantly slow-twitch soleus (SOL) muscles were examined from male Sprague–Dawley rats (3, 6, 9, 12 months). Ca2+ sensitivity of contractile apparatus decreased with age in both fast- (~ 0.04 pCa units) and slow-twitch (~ 0.07 pCa units) muscle fibres, and specific force increased (by ~ 50% and ~ 25%, respectively). Myosin heavy chain composition of EDL and SOL muscles altered to a small extent with age (decrease in MHCIIa proportion after 3 months). Glycogen content increased with age (~ 80% in EDL and 25% in SOL) and GLUT4 protein density decreased (~ 35 and 20%, respectively), whereas the glycogen-related enzymes were little changed. GAPDH protein content was relatively constant in both muscle types, but COXIV protein decreased ~ 40% in SOL muscle. Calsequestrin (CSQ) and SERCA densities remained relatively constant with age, whereas there was a progressive ~ 2–3 fold increase in CSQ-like proteins, though their role and importance remain unclear. There was also ~ 40% decrease in the density of the Na+, K+-ATPase (NKA) α1 subunit in EDL and the α2 subunit in SOL. These findings emphasise there are substantial changes in skeletal muscle function and the density of key proteins during early to mid-adulthood in rats, which need to be considered in the design and interpretation of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ansved T, Larsson L (1989) Effects of ageing on enzyme-histochemical, morphometrical and contractile properties of the soleus muscle in the rat. J Neurol Sci 93:105–124

    Article  PubMed  CAS  Google Scholar 

  • Baylor SM, Hollingworth S (2003) Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J Physiol 551:125–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bortolotto SK, Cellini M, Stephenson DG, Stephenson GM (2000) MHC isoform composition and Ca(2+)- or Sr(2+)-activation properties of rat skeletal muscle fibers. Am J Physiol Cell Physiol 279:C1564–C1577

    Article  PubMed  CAS  Google Scholar 

  • Bortolotto SK, Stephenson DG, Stephenson GM (2001) Caffeine thresholds for contraction in electrophoretically typed, mechanically skinned muscle fibres from SHR and WKY rats. Pflugers Arch 441:692–700

    Article  PubMed  CAS  Google Scholar 

  • Bretag AH (1987) Muscle chloride channels. Physiol Rev 67:618–724

    Article  PubMed  CAS  Google Scholar 

  • Cala SE, Scott BT, Jones LR (1990) Intralumenal sarcoplasmic reticulum Ca(2+)-binding proteins. Semin Cell Biol 1:265–275

    PubMed  CAS  Google Scholar 

  • Chasiotis D (1985) Effects of adrenaline infusion on cAMP and glycogen phosphorylase in fast-twitch and slow-twitch rat muscles. Acta Physiol Scand 125:537–540

    Article  PubMed  CAS  Google Scholar 

  • Chevessier F, Marty I, Paturneau-Jouas M, Hantai D, Verdiere-Sahuque M (2004) Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging. Neuromuscul Disord 14:208–216

    Article  PubMed  CAS  Google Scholar 

  • Christ-Roberts CY, Pratipanawatr T, Pratipanawatr W, Berria R, Belfort R, Kashyap S, Mandarino LJ (2004) Exercise training increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2 diabetic subjects. Metab Clin Exp 53:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Chua M, Dulhunty AF (1988) Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles. J Gen Physiol 91:737–757

    Article  PubMed  CAS  Google Scholar 

  • Clausen T (1986) Regulation of active Na+-K+ transport in skeletal muscle. Physiol Rev 66:542–580

    Article  PubMed  CAS  Google Scholar 

  • Coonan JR, Lamb GD (1998) Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad. J Physiol 509(Pt 2):551–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Culligan K, Banville N, Dowling P, Ohlendieck K (2002) Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle. J Appl Physiol (1985) 92:435–445

    Article  PubMed  CAS  Google Scholar 

  • De Luca A, Conte Camerino D, Connold A, Vrbova G (1990) Pharmacological block of chloride channels of developing rat skeletal muscle affects the differentiation of specific contractile properties. Pflugers Arch 416:17–21

    Article  PubMed  Google Scholar 

  • De Haan A, de Ruiter CJ, Lind A, Sargeant AJ (1993) Age-related changes in force and efficiency in rat skeletal muscle. Acta Physiol Scand 147:347–355

    Article  PubMed  Google Scholar 

  • Dickerson JW, Widdowson EM (1960) Chemical changes in skeletal muscle during development. Biochem J 74:247–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DiFranco M, Hakimjavadi H, Lingrel JB, Heiny JA (2015) Na,K-ATPase alpha 2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+. J Gen Physiol 146:281–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • dos Santos JM, Benite-Ribeiro SA, Queiroz G, Duarte JA (2012) The effect of age on glucose uptake and GLUT1 and GLUT4 expression in rat skeletal muscle. Cell Biochem Funct 30:191–197

    Article  PubMed  CAS  Google Scholar 

  • Dutka TL, Murphy RM, Stephenson DG, Lamb GD (2008) Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue. J Physiol 586:875–887

    Article  PubMed  CAS  Google Scholar 

  • Dutka TL, Verburg E, Larkins N, Hortemo KH, Lunde PK, Sejersted OM, Lamb GD (2012) ROS-mediated decline in maximum Ca2+-activated force in rat skeletal muscle fibers following in vitro and in vivo stimulation. PLoS One 7:e35226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Froemming GR, Ohlendieck K (2001) The role of ion-regulatory membrane proteins of excitation-contraction coupling and relaxation in inherited muscle diseases. Front Biosci 6:D65–D74

    Article  PubMed  CAS  Google Scholar 

  • Froemming GR, Murray BE, Harmon S, Pette D, Ohlendieck K (2000) Comparative analysis of the isoform expression pattern of Ca(2+)-regulatory membrane proteins in fast-twitch, slow-twitch, cardiac, neonatal and chronic low-frequency stimulated muscle fibers. Biochim Biophys Acta 1466:151–168

    Article  PubMed  CAS  Google Scholar 

  • Goodman CA, Stephenson GM (2000) Glycogen stability and glycogen phosphorylase activities in isolated skeletal muscles from rat and toad. J Muscle Res Cell Motil 21:655–662

    Article  PubMed  CAS  Google Scholar 

  • Goodman CA, Blazev R, Kemp J, Stephenson GM (2008) E-C coupling and contractile characteristics of mechanically skinned single fibres from young rats during rapid growth and maturation. Pflugers Arch 456:1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen K, Nogaard A, Clausen T (1984) The age-dependent changes in the number of 3H-ouabain binding sites in mammalian skeletal muscle. Pflugers Arch 402:100–108

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Takatori T, Nakajima M, Saka K, Iwase H, Nagao M, Niijima H, Matsuda Y (1999) Does the sequence of onset of rigor mortis depend on the proportion of muscle fibre types and on intra-muscular glycogen content? Int J Legal Med 112:167–171

  • Kristensen M, Juel C (2010) Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences. Acta Physiol (Oxf) 198:105–123

    Article  CAS  Google Scholar 

  • Lamb GD (2002) Excitation-contraction coupling and fatigue mechanisms in skeletal muscle: studies with mechanically skinned fibres. J Muscle Res Cell Motil 23:81–91

    Article  PubMed  CAS  Google Scholar 

  • Lamb GD, Stephenson DG (1990) Calcium release in skinned muscle fibres of the toad by transverse tubule depolarization or by direct stimulation. J Physiol 423:495–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamb GD, Stephenson DG (1994) Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 478(Pt 2):331–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamboley CR, Wyckelsma VL, Dutka TL, McKenna MJ, Murphy RM, Lamb GD (2015) Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans. J Physiol 593:2499–2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lingrel JB, Kuntzweiler T (1994) Na+,K(+)-ATPase. J Biol Chem 269:19659–19662

    PubMed  CAS  Google Scholar 

  • Mizunoya W, Wakamatsu J, Tatsumi R, Ikeuchi Y (2008) Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system. Anal Biochem 337:111–113

  • Mollica JP, Dutka TL, Merry TL, Lamboley CR, McConell GK, McKenna MJ, Murphy RM, Lamb GD (2012) S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans. J Physiol 590:1443–1463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy RM, Lamb GD (2013) Important considerations for protein analyses using antibody based techniques: down-sizing Western blotting up-sizes outcomes. J Physiol 591:5823–5831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy RM, Stephenson DG, Lamb GD (2004) Effect of creatine on contractile force and sensitivity in mechanically skinned single fibers from rat skeletal muscle. Am J Physiol Cell Physiol 287:C1589–1595

    Article  PubMed  CAS  Google Scholar 

  • Murphy RM, Larkins NT, Mollica JP, Beard NA, Lamb GD (2009) Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 587:443–460

    Article  PubMed  CAS  Google Scholar 

  • Murphy RM, Xu H, Latchman H, Larkins NT, Gooley PR, Stapleton DI (2012) Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle. Am J Physiol Cell Physiol 303:C1146–C1155

    Article  PubMed  CAS  Google Scholar 

  • Murray BE, Froemming GR, Maguire PB, Ohlendieck K (1998) Excitation-contraction-relaxation cycle: role of Ca2+-regulatory membrane proteins in normal, stimulated and pathological skeletal muscle (review). Int J Mol Med 1:677–687

    PubMed  CAS  Google Scholar 

  • Mutungi G, Trinick J, Ranatunga KW (2003) Resting tension characteristics in differentiating intact rat fast- and slow-twitch muscle fibers. J Appl Physiol (1985) 95:2241–2247

    Article  PubMed  Google Scholar 

  • Nielsen OB, Ortenblad N, Lamb GD, Stephenson DG (2004) Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity. J Physiol 557:133–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen J, Holmberg HC, Schroder HD, Saltin B, Ortenblad N (2011) Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol 589:2871–2885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ottenheijm CAC, Knottnerus AM, Buck D, Luo X, Greer K, Hoying A, Labeit S, Granziert H (2009) Tuning passive mechanics through differential splicing of titin during skeletal muscle development. Biophys J 97:2277–2286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parker GJ, Koay A, Gilbert-Wilson R, Waddington LJ, Stapleton D (2007) AMP-activated protein kinase does not associate with glycogen alpha-particles from rat liver. Biochem Biophys Res Commun 362:811–815

    Article  PubMed  CAS  Google Scholar 

  • Pass D (1993). The rat, vol 6(4), p 1. ANZCCART News

  • Pedersen TH, Nielsen OB, Lamb GD, Stephenson DG (2004) Intracellular acidosis enhances the excitability of working muscle. Science 305:1144–1147

    Article  PubMed  CAS  Google Scholar 

  • Pedersen TH, Riisager A, de Paoli FV, Chen TY, Nielsen OB (2016) Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle. J Gen Physiol 147:291–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: Their role in calcium transport and disease. Muscle Nerve 35:430–442

    Article  PubMed  CAS  Google Scholar 

  • Posterino GS, Lamb GD (2003) Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibres. J Physiol 551:219–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prestes J, Leite RD, Pereira GB, Shiguemoto GE, Bernardes CF, Asano RY, Sales MM, Bartholomeu Neto J, Perez SE (2012) Resistance training and glycogen content in ovariectomized rats. Int J Sports Med 33:550–554

    Article  PubMed  CAS  Google Scholar 

  • Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO (1994) Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 269:14396–14401

    PubMed  CAS  Google Scholar 

  • Ribeiro LF, Teixeira IP, Aparecido da Silva G, Dalia RA, Junior MC, Bertolini NO, Rostom de Mello MA, Luciano E (2012) Effects of swimming training on tissue glycogen content in experimental thyrotoxic rats. Can J Physiol Pharmacol 90:587–593

    Article  PubMed  CAS  Google Scholar 

  • Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017

    Article  PubMed  CAS  Google Scholar 

  • Ryu JH, Drain J, Kim JH, McGee S, Gray-Weale A, Waddington L, Parker GJ, Hargreaves M, Yoo SH, Stapleton D (2009) Comparative structural analyses of purified glycogen particles from rat liver, human skeletal muscle and commercial preparations. Int J Biol Macromol 45:478–482

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P (2011) A scientific review of age determination for a laboratory rat: how old is it in comparison with human. Age? Biomed Int 2:81–89

    Google Scholar 

  • Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4:624–630

    PubMed  PubMed Central  Google Scholar 

  • Stephenson DG, Wendt IR (1984) Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J Muscle Res Cell Motil 5:243–272

    Article  PubMed  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1981) Calcium-activated force responses in fast-twitch and slow-twitch skinned muscle-fibers of the rat at different temperatures. J Physiol 317:281–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1982) Effects of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat. J Physiol 333:637–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugiyama S, Takasawa M, Hayakawa M, Ozawa T (1993) Changes in skeletal-muscle, heart and liver mitochondrial electron-transport activities in rats and dogs of various ages. Biochem Mol Biol Int 30:937–944

    PubMed  CAS  Google Scholar 

  • Trinh HH, Lamb GD (2006) Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Clin Exp Pharmacol Physiol 33:591–600

    Article  PubMed  CAS  Google Scholar 

  • Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 23:317–323

    Article  PubMed  CAS  Google Scholar 

  • West W, Hicks A, McKelvie R, OBrien J (1996) The relationship between plasma potassium, muscle membrane excitability and force following quadriceps fatigue. Pflugers Arch 432:43–49

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H, Bruton JD, Katz A (2010) Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res 316:3093–3099

    Article  PubMed  CAS  Google Scholar 

  • Wyckelsma VL, McKenna MJ, Serpiello FR, Lamboley CR, Aughey RJ, Stepto NK, Bishop DJ, Murphy RM (2015) Single-fiber expression and fiber-specific adaptability to short-term intense exercise training of Na+-K+-ATPase alpha- and beta-isoforms in human skeletal muscle. J Appl Physiol (1985) 118:699–706

    Article  CAS  Google Scholar 

  • Xu H, Stapleton D, Murphy RM (2015) Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules. J Physiol Biochem 71:267–280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn M. Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Lamb, G.D. & Murphy, R.M. Changes in contractile and metabolic parameters of skeletal muscle as rats age from 3 to 12 months. J Muscle Res Cell Motil 38, 405–420 (2017). https://doi.org/10.1007/s10974-017-9484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-017-9484-6

Keywords

Navigation