Skip to main content
Log in

Oxidation-Rate Excursions During the Oxidation of Copper in Gaseous Environments at Moderate Temperatures

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of copper powders in oxygen and in dry and humid air was investigated using thermogravimetric analysis (TGA). The extent of oxidation grew linearly with time until the weight-based thickness of the oxide film reached 0.13–1.22 nm, depending on the temperature. Between 30 and 90°C there was little difference between the kinetic curves observed in air and in oxygen, respectively. Higher humidity of the air resulted in an increased oxidation rate. Following the initial linear segment, the oxidation kinetics could be best described in terms of a logarithmic rate law between 30 and 45°C and in terms of a power law between 60 and 90°C. The activation energy for the initial linear stage was (44±2) kJ and for the subsequent oxidation (102±12) kJ. Delayed increases in oxidation rate were observed with a ca. 0.1-μm powder around 100°C, with a ca. 1-μm powder around 320°C, and with a < 10μm powder around 360°C. A three-stage model consisting of an initial linear stage, parabolic growth culminating in cracking of the oxide film, and subsequent re-start of the parabolic growth, gave good agreement with the experimental data. Whenever the powder is relatively uniform and the distribution of film-cracking times among the powder grains is narrow, e.g., within 23% of the median cracking time, an increase in the oxidation rate of the entire sample can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Wagner and K. Grunewald, Z. physikal. Chem. B 40, 455(1938).

    Google Scholar 

  2. R. F. Tylecote, J. Inst. Met. 78, 259(1950/1951).

    Google Scholar 

  3. A. Ronnquist and H. Fischmeister, J. Inst. Met. 89, 65(1960/1961).

    Google Scholar 

  4. S. Mrowec and A. Stoklosa, Bull. Acad. Polon. Sci. 18, 531(1970).

    Google Scholar 

  5. S. K. Roy, S. K. Bose, and S. C. Sircar, Oxid. Met. 35, 1(1991).

    Google Scholar 

  6. T. N. Rhodin, Jr., J. Am. Chem. Soc. 72, 5102(1950).

    Google Scholar 

  7. S. K. Roy and S. C. Sircar, Oxid. Met. 15, 9(1981).

    Google Scholar 

  8. R. F. Tylecote, J. Inst. Met. 81, 681(1952/1953).

    Google Scholar 

  9. R. F. Tylecote, Metallurgia 53, 191(1956).

    Google Scholar 

  10. D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fassell, J. Electrochem. Soc. 103, 475(1957).

    Google Scholar 

  11. R. Haugsrud, J. Electrochem. Soc. 149, B14(2002).

    Google Scholar 

  12. H. Uhlig and R. Revie, Corrosion and Corrosion Control, (Wiley, New York, NY, 1985) p. 201.

    Google Scholar 

  13. Y. Z. Hu, R. Sharangpani, and S.-P. Tay, J. Electrochem. Soc. 148, G669(2001).

    Google Scholar 

  14. R. Guan, H. Hashimoto, and T. Yoshida, Acta Cryst. B40, 109(1984).

    Google Scholar 

  15. M. Lenglet and K. Kartouni, Rev. Metall. 90, 1638(1993).

    Google Scholar 

  16. A. M. Khoviv, I. N. Nazarenko, and A. A. Churikov, Inorg. Mat. 37, 473(2001).

    Google Scholar 

  17. N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529(1923).

    Google Scholar 

  18. N. Cabrera and N. F. Mott, Rept. Prog. Phys. 12, 263(1948–1949).

    Google Scholar 

  19. A. Yanase, H. Matsui, K. Tanaka, and H. Komiyama, Surf. Sci. 219, L601(1989).

    Google Scholar 

  20. P. Pascal, Nouveau Traite de Chimie Minerale, Vol. 1 (Masson et Cie., Paris, 1956) p. 633.

    Google Scholar 

  21. W. H. J. Vernon, J. Chem. Soc., 2273(1926).

  22. R. J. Nika and P. M. Hall, IEEE Trans. Compon. Hybrids Manuf. Technol. CHMT-2, 412(1979).

    Google Scholar 

  23. S. Nakayama, A. Kimura, M. Shibata, S. Kuwabata, and T. Osakai, J. Electrochem. Soc. 148, B467(2001).

    Google Scholar 

  24. M. Hamalainen and I. Iivari, Suom. Kemistil. B 41, 37(1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Z., Marks, C.R. & Barkatt, A. Oxidation-Rate Excursions During the Oxidation of Copper in Gaseous Environments at Moderate Temperatures. Oxidation of Metals 60, 393–408 (2003). https://doi.org/10.1023/A:1027331605417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027331605417

Navigation