Skip to main content
Log in

Stable Adaptive Fuzzy Control with TSK Fuzzy Friction Estimation for Linear Drive Systems

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper considers the control of a linear drive system with friction and disturbance compensation. A stable adaptive controller integrated with fuzzy model-based friction estimation and switching-based disturbance compensation is proposed via Lyapunov stability theory. A TSK fuzzy model with local linear friction models is suggested for real-time estimation of its consequent local parameters. The parameters update law is derived based on linear parameterization. In order to compensate for the effects resulting from estimation error and disturbance, a robust switching law is incorporated in the overall stable adaptive control system. Extensive computer simulation results show that the proposed stable adaptive fuzzy control system has very good performances, and is potential for precision positioning and trajectory tracking control of linear drive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong-Hélouvry, B.: Control of Machines with Friction, Kluwer Academic Publishers, Boston, 1991.

    Google Scholar 

  2. Åström, K. J. and Wittenmark, B.: Adaptive Control, Addison-Wesley, New York, 2nd edn, 1995.

    Google Scholar 

  3. Babuška, R.: Fuzzy Modeling for Control, Kluwer Academic Publishers, Boston, 1998.

    Google Scholar 

  4. Bowden, F. P. and Leben, L.: The nature of sliding and the analysis of friction, Proc. Roy. Soc. Ser. A 169 (1953), 371–373.

    Google Scholar 

  5. Canudas deWit, C., Åström, K. J., and Braun, K.: Adaptive friction compensation in DC-motor drives, IEEE Trans. Robotics Automat. 3(6) (1987), 681–685.

    Google Scholar 

  6. Canudas de Wit, C., Olsson, H., Åström, K. J., and Lischinsky, P.: A new model for control of systems with friction, IEEE Trans. Automat. Control 40(3) (1995), 419–425.

    Google Scholar 

  7. Craig, J. J.: Introduction to Robotics: Mechanics and Control, 2nd edn, Addison-Wesley, New York, 1989.

    Google Scholar 

  8. Dahl, P.: A solid friction model, Technical Report TOR-0158(3107–18)-1, Aerospace Corporation, El Segundo, CA, 1968.

    Google Scholar 

  9. Dupont, P. E.: Avoiding stick-slip through PD control, IEEE Trans. Automat. Control 39(5) (1994), 1094–1097.

    Google Scholar 

  10. Guo, Q., Guo, W., Zhou, Y., and Wang, L.: Preview feedforward compensation of permanent magnet linear synchronous motor servo system implemented with Adaline, in: IEEE 6th Internat. Workshop on Advanced Motion Control, 2000, pp. 576–579.

  11. Lin, C. H., Chou,W. D., and Lin, F. J.: Adaptive hybrid control using a recurrent neural network for a linear synchronous motor servo-drive system, IEE Proc. Control Theory Appl. 148(2) (2001), 156–168.

    Google Scholar 

  12. Lin, L. C. and Lin, Y. J.: Fuzzy-enhanced adaptive control for flexible drive system with friction using genetic algorithms, J. Intelligent Robotic Systems 23 (1998), 379–405.

    Google Scholar 

  13. Nikiforuk, P. N. and Tamura, K.: Design of a disturbance accommodating adaptive control system and its application to a DC-servo motor system with Coulomb friction, ASME J. Dyn. Systems Measm. Control 110 (1988), 343–349.

    Google Scholar 

  14. Novotny, D. W. and Lipo, T. A.: Vector Control and Dynamics of AC Drives, Oxford, New York, 1997.

    Google Scholar 

  15. Ohnishi, K., Shibata, M., and Muraami, T.: Motion control for advanced mechatronics, IEEE/ASME Trans. Mechatronics 1(1) (1996).

  16. Rice, J. R. and Ruina, A. L.: Stability of steady frictional slipping, J. Appl. Mech. 50(2) (1983).

  17. Ro, P. I. and Hubbel, P. I.: Model reference adaptive control of dual-mode micro/macro dynamics of ball screws for nanometer motion, ASME J. Dyn. Systems Measm. Control 115 (1993), 103–108.

    Google Scholar 

  18. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control, Springer, New York, 1999.

    Google Scholar 

  19. Senturia, S. D.: Microsystem Design, Kluwer Academic Publishers, Boston, 2001.

    Google Scholar 

  20. Slocum, A. H.: Precision Machine Design, Prentice-Hall, Englewood Cliffs, NJ, 1992.

    Google Scholar 

  21. Slotine, J. E. and Li, W.: Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  22. Smith, M. H., Annaswamy, A. M., and Slocum, A. H.: Adaptive control strategies for precision machine tool axis, Precision Engrg. 17(3) (1995), 192–206.

    Google Scholar 

  23. Spooner, J. T., Maggiore, M., Ordóñez, R., and Passino, K. M.: Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques, Wiley-Interscience, New York, 2002.

    Google Scholar 

  24. Swevers, J., Al-Bender, F., Ganseman, C. G., and Prajogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation, IEEE Trans. Automat. Control 45(4) (2000), 675–686.

    Google Scholar 

  25. Walrath, C. D.: Adaptive bearing friction compensation based on recent knowledge of dynamic friction, Automatica 20 (1984), 717–727.

    Google Scholar 

  26. Wang, L. X.: A Course in Fuzzy Systems and Control, Prentice-Hall, Englewood Cliffs, NJ, 1997.

    Google Scholar 

  27. Yang, S. and Tomizuka, M.: Adaptive pulse width control for precise positioning under the influence of stiction and Coulomb friction, ASME J. Dyn. Systems Measm. Control 110 (1988), 221–227.

    Google Scholar 

  28. Yang, Y. P. and Chu, J. S.: Adaptive velocity control of DC motors with Coulomb friction identification, ASME J. Dyn. Systems Measm. Control 115 (1993), 95–102.

    Google Scholar 

  29. Yen, J. and Langari, R.: Fuzzy Logic: Intelligence, Control, and Information, Prentice-Hall, Englewood Cliffs, NJ, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, LC., Lai, JC. Stable Adaptive Fuzzy Control with TSK Fuzzy Friction Estimation for Linear Drive Systems. Journal of Intelligent and Robotic Systems 38, 237–253 (2003). https://doi.org/10.1023/A:1027308703486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027308703486

Navigation