Skip to main content
Log in

The Effect of Gestational State on Oxygen Consumption and Response to Hypoxia in the Sailfin Molly, Poecilia latipinna

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Metabolic activity in livebearing fishes increases with embryonic development so that embryos prior to parturition may have a higher mass-specific oxygen requirement than maternal tissues, temporarily increasing the total routine oxygen requirement of the female. We examined whether females of the livebearing poeciliid Poecilia latipinna (sailfin molly) increase their routine metabolic oxygen consumption during development of their broods. We also quantified effects of gestation on time allocation to aquatic surface respiration (ASR) under hypoxic conditions. Mass-adjusted routine metabolic rate (RMR) of female mollies showed a significant increase during late gestation. The RMR of males did not differ from females that were in their early or mid stage of gestation, but was lower than females in late gestation. Gestating females spent approximately 27% more time conducting ASR than non-gestating females when exposed to chronic hypoxia (1 mg l−1), further supporting a brood-related increase in oxygen demand. Increased time allocation to ASR may directly affect maternal predation risk in low-oxygen conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackburn, D.G. 1992. Convergent evolution of viviparity, matrotrophy, and specialization for fetal nutrition in reptiles and other vertebrates. Am. Zool. 32: 313-321.

    Google Scholar 

  • Blackburn, D.G., H.E. Evans & L.J. Vitt. 1985. The evolution of fetal nutritional adaptations. pp. 437-439. In: R. Duncker & G.M. Fleischer (ed.) Vertebrate Morphology, Gustav Fischer Verlag, New York.

    Google Scholar 

  • Boehlert, G.W., M. Kusakari, M. Shimizu & J. Yamada. 1986. Energetics during embryonic development in kurosoi, Sebastes schlegeli. J. Exper. Mar. Biol. Ecol. 101: 239-256.

    Google Scholar 

  • Boehlert, G.W., M. Kusakari & J. Yamada. 1991. Oxygen consumption of gestating female Sebastes schlegeli: Estimating the reproductive costs of livebearing. Environ. Biol. Fish. 30: 81-89.

    Google Scholar 

  • Boehlert, G.W. & M.M. Yoklavich. 1984. Reproduction, embryonic energetics, and the maternal-fetal relationship in the viviparous genus Sebastes (Pisces: Scorpaenidae). Biol. Bull. 167: 354-370.

    Google Scholar 

  • Cech, J.J. Jr., M.J. Massingill, B.Vondracek & A.L. Linden. 1985. Respiratory metabolism of mosquitofish, Gambusia affinis: Effects of temperature, dissolved oxygen and sex difference. Environ. Biol. Fish. 13: 297-307.

    Google Scholar 

  • Chapman, L.J. & C.A. Chapman. 1993. Desiccation, flooding, and the behavior of Poecilia gillii (Pisces: Poeciliidae). Ichthyol. Explor. Freshw. 4: 279-287.

    Google Scholar 

  • Chapman, L.J., C.A. Chapman, D.A. Brazeau, B. McLaughlin & M. Jordan. 1999. Papyrus swamps, hypoxia, and faunal diversification: Variation among populations of Barbus neumayeri. J. Fish Biol. 54: 310-327.

    Google Scholar 

  • Chapman, L.J. & K.F. Liem. 1995. Papyrus swamps and the respiratory ecology of Barbus neumayeri. Environ. Biol. Fish. 44: 183-197.

    Google Scholar 

  • Constanz, G.D. 1989. Reproductive biology of poeciliid fishes. pp. 33-50. In: G.K. Meffe & F.F. Snelson Jr. (ed.) Ecology and Evolution of Livebearing Fishes (Poeciliidae), Prentice Hall, Inc., Englewood Cliffs, NJ.

    Google Scholar 

  • DeMarco, V. 1993. Metabolic rates of female viviparous lizards (Sceloporus jarrovi) throughout the reproductive cycle: Do pregnant lizards adhere to standard allometry? Physiol. Zool. 66: 166-180.

    Google Scholar 

  • DeSilva, C.D., S. Premawansa & C.N. Keembiyahetty. 1986. Oxygen consumption in Oreochromis niloticus (L.) in relation to development, salinity, temperature and time of day. J. Fish Biol. 29: 267-277.

    Google Scholar 

  • DeSilva, C.D. & P. Tytler. 1973. The influence of reduced environmental oxygen on the metabolism and survival of herring and plaice larvae. Neth. J. Sea Res. 7: 345-362.

    Google Scholar 

  • Dygert, P.H. & D.R. Gunderson. 1991. Energy utilization by embryos during gestation in viviparous copper rockfish, Sebastes caurinus. Environ. Biol. Fish. 30: 165-171.

    Google Scholar 

  • Fry, F.E.J. 1957. The aquatic respiration of fish. pp. 1-63. In: M.E. Brown (ed.) The Physiology of Fishes, Academic Press Inc., New York.

    Google Scholar 

  • Gee, J.H., R.F. Tallman & H.J. Smart. 1978. Reactions of some Great Plains fishes to progressive hypoxia. Can. J. Zool. 56: 1962-1966.

    Google Scholar 

  • Goodwin, N.B., N.K. Dulvy & J.D. Reynolds. 2002. Life-history correlates of the evolution of live bearing in fishes. Proc. R. Soc. Lond. B 357: 259-267.

    Google Scholar 

  • Guillette, L.J. Jr. 1982. The effects of gravidity on the metabolism of the reproductively bimodal lizard, Sceloporus aenus. J. Exp. Zool. 223: 33-36.

    Google Scholar 

  • Guillette, L.J. Jr. 1987. The evolution of viviparity in fishes, amphibians and reptiles: An endocrine approach. pp. 523-562. In: D.O. Norris & R.E. Jones (ed.) Hormones and Reproduction in Fishes, Amphibians, and Reptiles, Plenum Publishing Co., New York.

    Google Scholar 

  • Haynes, J.L. 1995. Standardized classification of poeciliid development for life-history studies. Copeia 1995: 147-154.

    Google Scholar 

  • Houde, E.D. & R.C. Scheckter. 1983. Oxygen uptake and comparative energetics among eggs and larvae of three subtropical marine fishes. Mar. Biol. 72: 283-293.

    Google Scholar 

  • Kramer, D.L. 1983. The evolutionary ecology of respiratory mode in fishes: An analysis based on the cost of breathing. Environ. Biol. Fish. 9: 145-158.

    Google Scholar 

  • Kramer, D.L., D. Manley & R. Bourgeois. 1983. The effects of respiratory mode and oxygen concentration on the risk of aerial predation in fishes. Can. J. Zool. 61: 653-665.

    Google Scholar 

  • Kramer, D.L. & M. McClure. 1982. Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Environ. Biol. Fish. 7: 47-55.

    Google Scholar 

  • Kramer, D.L. & J.P. Mehegan. 1981. Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poeciliidae). Environ. Biol. Fish. 6: 299-313.

    Google Scholar 

  • Lee, D.S. C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister & J.R. Stauffer, Jr. 1980. Atlas of North American Freshwater Fishes. North Carolina State Musuem of Natural History, Raleigh, NC.

    Google Scholar 

  • Lewis, W.M. Jr. 1970. Morphological adaptation of cyprinodontoids for inhabiting oxygen deficient waters. Copeia 1970: 319-326.

    Google Scholar 

  • Marsh-Matthews, E., P. Skierkowski & A. DeMarais. 2001. Direct evidence for mother-to-embryo transfer of nutrients in the livebearing fish Gambusia geiseri. Copeia 2001: 1-6.

    Google Scholar 

  • McKinsey, D.M. & L.J. Chapman. 1998. Dissolved oxygen and fish distribution in a Florida spring. Environ. Biol. Fish. 53: 211-223.

    Google Scholar 

  • Meyer, A. & C. Lydeard. 1993. The evolution of copulatory organs, internal fertilization, placentae, and viviparity in killifishes (Cyprinodontiformes) inferred from a DNA phylogeny of the tyrosine kinase gene X-src. Proc. R. Soc. Lond. B. 254: 153-162.

    Google Scholar 

  • Morioka, Y. 1985. Growth, respiration and food requirement of flounder, Paralichthys olivaceus, in its early life history. Bull. Seikai Reg. Fish. Res. Lab. 62: 67-77.

    Google Scholar 

  • Oikawa, S. & Y. Itazawa. 1993. Tissue respiration and relative growth of parts of body of a marine teleost, porgy Pagrus major, during early life stages with special reference to the metabolism-size relationship. Comp. Biochem. Physiol. A 105: 741-744.

    Google Scholar 

  • Oikawa, S., Y. Itazawa & M. Gotoh. 1991. Ontogenetic change in the relationship between metabolic rate and body mass in sea bream Pagrus major (Temminck and Schlegel). J. Fish Biol. 38: 483-496.

    Google Scholar 

  • Olowo, J.P. & L.J. Chapman. 1996. Papyrus swamps and variation in the respiratory behavior of the African fish Barbus neumayeri. Afr. J. Ecol. 34: 211-222.

    Google Scholar 

  • Post, J.R. & J.A. Lee. 1996. Metabolic ontogeny of teleost fishes. Can. J. Fish. Aqua. Sci. 53: 910-923.

    Google Scholar 

  • Potvin, C., M.J. Lechowicz & S. Tardif. 1990. The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 7: 1389-1400.

    Google Scholar 

  • Thibault, R.E. & R.J. Schultz. 1978. Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae). Evolution 32: 320-333.

    Google Scholar 

  • Timmerman, C.M. 2001. An integrative study of the sailfin molly, Poecilia latipinna (Atherinomorpha: Poeciliidae) response to hypoxia. Ph.D. Dissertation, University of Florida, Gainesville, Florida. 175 pp.

    Google Scholar 

  • Trexler, J.C. 1985. Variation in degree of viviparity in the sailfin molly, Poecilia latipinna. Copeia 1985: 999-1004.

    Google Scholar 

  • Trexler, J.C. 1997. Resource availability and plasticity in offspring provisioning: Embryo nourishment in sailfin mollies. Ecology 78: 1370-1381.

    Google Scholar 

  • Trexler, J.C., R.C. Tempe & J. Travis. 1994. Size-selective predation of sailfin mollies by two species of heron. Oikos 69: 250-258.

    Google Scholar 

  • Ultsch, G.R., H. Boschung & M.J. Ross. 1978. Metabolism, critical oxygen tension and habitat selection in darters (Etheostoma). Ecology 59: 99-107.

    Google Scholar 

  • Ultsch, G.R. 1995. On adjusting metabolic rates for body size. Fla. Sci. 58: 270-273.

    Google Scholar 

  • Walsh, W.A., C. Swanson, C.S. Lee, J.E. Banno & H. Eda. 1989. Oxygen consumption by eggs and larvae of striped mullet, Mugil cephalus, in relation to development, salinity and temperature. J. Fish Biol. 35: 347-358.

    Google Scholar 

  • Webb, P.W. & J.R. Brett. 1972. Oxygen consumption of embryos and parents, and oxygen transfer characteristics within the ovary of two species of viviparous seaperch, Rhacochilus vacca and Embiotoca lateralis. J. Fish. Res. Board Can. 29: 1543-1553.

    Google Scholar 

  • Weber, J.M. & D.L. Kramer. 1983. Effects of hypoxia and surface access on growth, mortality, and behavior of juvenile guppies Poecilia reticulata. Can. J. Fish. Aqua. Sci. 40: 1583-1588.

    Google Scholar 

  • Winberg, G.G. 1956. Rate of metabolism and food requirements in fishes. Translation series No. 194. Fisheries Research Board of Canada Biological Station. Nanaimo, British Columbia.

    Google Scholar 

  • Winberg, G.G. 1961. New information on metabolic rate in fishes. Transactions Series No. 362. Fisheries Research Board Canada. Nanaimo, British Columbia (translated from Russian).

    Google Scholar 

  • Wourms, J.P. 1981. Viviparity: The maternal: fetal relationship in fishes. Amer. Zool. 21: 473-515.

    Google Scholar 

  • Wourms, J.P. & J. Lombardi. 1992. Reflections on the evolution of piscine viviparity. Amer. Zool. 32: 276-293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmerman, C.M., Chapman, L.J. The Effect of Gestational State on Oxygen Consumption and Response to Hypoxia in the Sailfin Molly, Poecilia latipinna . Environmental Biology of Fishes 68, 293–299 (2003). https://doi.org/10.1023/A:1027300701599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027300701599

Navigation