Skip to main content
Log in

The Effect of Physical Activity on the Properties of Bone Tissue

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The effect of sports training or lack of physical activity on the properties of bone tissue is investigated. People with normal physical activity, sportsmen, and hypodynamic persons are tested. Ultrasound as a safe and noninvasive method is used. In normal activity and after short-time sports training or bed rest, the maximum ultrasound velocity is observed in the middle part of the tibia diaphysis because this region has the highest bending moment. Long-time sports training (more than seven years) in basketball and freestyle skiing alters the distribution of ultrasound velocity along the tibia: the maximum velocity is found in the distal diaphysis of the tibia due to the existence of high mechanical stresses in this region caused by the intense external impact loads and the calf muscle contraction. The maximum velocity for rowers is in the middle diaphysis or in the region between the proximal and middle diaphysis, since high impact loads are not characteristic of their foot joints. Long-time hypodynamia weakens the distal diaphysis of the tibia due to the lack of naturally occuring high stresses in this part of the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Price, B. Jackson, R. Eastell, A. M. Wilson, R. G. G. Russel, L. E. Layon, and A. E. Googship, “The response of the skeleton to physical training: a biochemical study in horses,” Bone, 17, 221-227 (1995).

    Google Scholar 

  2. A. M. Boot, M. A. J. de Ridder, H. A. P. Pols, E. P. Krenning, and S. M. P. F. de Muinck Keizer-Schrama, “Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity,” J. Clinical Endocrinol. Metabol., 82, 57-62 (1997).

    Google Scholar 

  3. K. Uusi-Rasi, H. Haapasalo, P. Kannus, M. Pasanen, H. Sievanen, P. Oja, and I. Vuori, “Determinants of bone mineralization in 8 to 20 year old Finnish females,” Eur. J. Clinical Nutrition, 51, 54-59 (1997).

    Google Scholar 

  4. C. J. R. Blimkie, S. Rice, C. E. Webber, J. Martin, D. Levy, and C. L. Gordon, “Effects of resistance training on bone mineral content and density in adolescent females,” Can. J. Physiol. Pharmacol., 74, 1025-1033 (1996).

    Google Scholar 

  5. H. Haapasalo, H. Sievanen, P. Kannus, A. Heinonen, P. Oja, and I. Vuori, “Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading,” J. Bone Miner. Res., 11, 864-872 (1996).

    Google Scholar 

  6. J. P. Casez, S. Fischer, E. Stussi, H. Stalder, A. Gerber, P. D. Delmas, J. P. Colombo, and P. Jaeger, “Bone mass at lumbar spine and tibia in young males-impact of physical fitness, exercise, and anthropometric parameters: a prospective study in a cohort of military recruits,” Bone, 17, 211-219 (1995).

    Google Scholar 

  7. A. Heinonen, P. Oja, P. Kannus, H. Sievanen, H. Haapasalo, A. Manttari, and I. Vuori, “Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton,” Bone, 17, 197-203 (1995).

    Google Scholar 

  8. A. Heinonen, P. Kannus, H. Sievanen, P. Oja, M. Pasanen, M. Rinne, K. Uusi-Rasi, and I. Vuori, “Randomized controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures,” Lancet, 348, 1343-1347 (1996).

    Google Scholar 

  9. D. R. Taaffe, T. L. Robinson, C. M. Snow, and R. Marcus, “High-impact exercise promotes bone gain in well-trained female athletes,” J. Bone Miner. Res., 12, 255-260 (1997).

    Google Scholar 

  10. F. Pirnay, M. Bodeux, and J. M. Grielaard, “Bone mineral content and physical activity,” Int. J. Sports Medicine, 8, 331-335 (1987).

    Google Scholar 

  11. Yu. Zh. Saulgozis, “Change of X-ray density of human bones upon physical activity,” in: Medical Biomechanics, Vol. 1[in Russian], Riga (1986), pp. 595-600.

    Google Scholar 

  12. J. Saulgozis and I. Pontaga, “Diagnostics of bone fractures, their consolidation and non-unions by ultrasound,” Acta Medica Baltica, 3, 232-236 (1996).

    Google Scholar 

  13. N. McCartney, A. L. Hicks, J. Martin, and C. E. Webber, “Long-term resistance training in elderly: effects on dynamic strength, exercise capacity, muscle and bone,” Biol. Sci., 50A, 97-104 (1995).

    Google Scholar 

  14. S. N. Stanley, R. N. Marshall, M. W. Tilyard, and N. A. S. Taylor, “Skeletal muscle mechanics in osteoporotic and nonosteoporotic postmenopausal women,” Eur. J. Appl. Physiol., 69, 450-455 (1994).

    Google Scholar 

  15. A. Aniansson and C. Zetterberg, “Impaired muscle function with aging. A background factor in the incidence of fractures of the proximal end of the femur,” Clinic. Orthopedics Relat. Res., 191, 193-201 (1984).

    Google Scholar 

  16. P. D. Chilibeck, A. Calder, D. G. Sale, and C. E. Webber, “Twenty weeks of weight training increases lean tissue mass but not bone mineral mass or density in healthy, active young women,” Can. J. Physiol. Pharmacol., 74, 1180-1185 (1996).

    Google Scholar 

  17. M. R. Forwood and D. B. Burr, “Physical activity and bone mass: exercises in futility?,” Bone Miner. Res., 21, 89-112 (1993).

    Google Scholar 

  18. M. Revel, M. A. Mayoux-Benhamon, J. P. Rabourdin, F. Bagheri, and C. Roux, “One-year psoas training can prevent lumbar bone loss in postmenopausal women: a randomized controlled trial,” Calcified Tissue Int., 53, 307-311 (1993).

    Google Scholar 

  19. L. A. Pruitt, D. R. Taaffe, and R. Marcus, “Effects of a one-year high intensity versus low-intensity resistance training program on bone mineral density in older women,” J. Bone Miner. Res., 10, 1788-1795 (1995).

    Google Scholar 

  20. A. A. Merten, V. V. Dzenis, V. V. Schumskii, V. K. Bernkhard, and G. Yankovskii, “A study of the effect of physical stresses on the state of human tibial bones according to ultrasonic measurement data,” Polym. Mech., 12, No. 6, 942-946 (1976).

    Google Scholar 

  21. V. V. Dzenis, A. A. Merten, and V. V. Schumskii, “Effect of dosed physical loads on the state of the tibial bones of athletes according to ultrasound measurements,” Mech. Compos. Mater., 15, No. 5, 570-574 (1979).

    Google Scholar 

  22. I. Pontaga and J. Saulgozis, “Changes of ultrasound velocity in children's tibial bone due to hypodynamia,” Mech. Compos. Mater., 32, No. 5, 487-495 (1996).

    Google Scholar 

  23. A. Mertens, Functional Relation of Bone and Muscle Systems [in Russian], Zinatne, Riga (1986).

    Google Scholar 

  24. I. Pontaga and J. Saulgozis, “The effect of muscles action on human tibia stiffness,” in: Studia I Monografie AWF, Wroclaw (1998), pp. 161-166.

  25. T. Kimura, “Mechanical characteristics of human leg bones,” J. Faculty Sci. Univers. Tokyo, Sec. V, Vol. IV, Pt. 4, 319-393 (1974).

    Google Scholar 

  26. A. Grigorjev, V. Oganov, A. Rakhmanov, B. Morukov, H. Jansons, V. Dzenis, and V. Zaichick, “Bone examination by noninvasive techniques in a 120 day head down tilt test,” in: Proc. 2nd Int. Conf. Space Physiol., Toulouse (1985), pp. 99-103.

  27. J. Saulgozis, I. Pontaga, and V. Logins, “Changes of ultrasound velocity in human tibia due to hypodynamia,” in: Proc. XV Congr. Int. Soc. Biomech., Jyvaskyla (1995), pp. 804-805.

  28. S. Pilgaard, J. C. Poulsen, and J. H. Christensen, “Stress fractures,” Acta Orthopaed. Scandinav., 17, 167-169 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontaga, I., Paeglitis, A. The Effect of Physical Activity on the Properties of Bone Tissue. Mechanics of Composite Materials 36, 379–384 (2000). https://doi.org/10.1023/A:1026695000532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026695000532

Navigation