Skip to main content
Log in

Infrared Digital Spectrograph for Hydroxyl Rotational Temperature Measurements

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A digital spectrograph designed for registration of nightglow intensity variations and estimation of the atmospheric temperature by the rotational structure of the hydroxyl emission luminosity is described. The spectrograph is based on an MДP-2 monochromator and an ST-6 CCD detector. The instrument records the nightglow spectrum in a wavelength range of 800–1000 nm, in which strong molecular hydroxyl (OH) bands emitted at the mesopause height (∼87 km) are present. The rotational temperature of OH is estimated by the least square fitting of the synthetic spectrum constructed for various temperatures to an experimental one. The temperature measurement errors are 2–10 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hines, C.O., Can. J. Phys., 1960, vol. 38, p. 1441.

    Google Scholar 

  2. Shefov N.N., Spektral'nye elektrofotometricheskie i radiolokatsionnye issledovaniya polyarnykh siyanii i svecheniya nochnogo neba (Spectral Electrophysical and Radio Location Studies of Auroras and Nightglow), Moscow: Izd. AN SSSR, 1961, no. 5, pp. 5–9.

    Google Scholar 

  3. Sivjee, G.G., Planet. Space Sci., 1992, vol. 40, p. 235.

    Google Scholar 

  4. Sheer, J., Reisin, E.R., Espy, J.P., et al., J. Atmos. Terr. Phys., 1994, vol. 56, p. 1701.

    Google Scholar 

  5. Lowe, R.P. and Turnull, D.N., Geophys. Res. Lett., 1995, vol. 22, p. 2813.

    Google Scholar 

  6. Rogers, J.W., Murphy, R.E., Stair, A.T., et al., J. Geophys. Res., 1973, vol. 78, p. 7023.

    Google Scholar 

  7. Good, R.E., Planet. Space Sci., 1976, vol. 24, p. 389.

    Google Scholar 

  8. Watanabe, T., Nakamura, M., and Ogawa, T. J. Geophys. Res., 1981, vol. 86, p. 5768.

    Google Scholar 

  9. Ulwick, J.C., Baker, K.D., Baker, D.J., et al., J. Atmos. Terr. Phys., 1987, vol. 49, pp. 855–862.

    Google Scholar 

  10. Ammosov, P.P., Gavrilyeva, G.A., and Ignatyev, V.M., Adv. Space Res., 1992, vol. 12, p. 145.

    Google Scholar 

  11. Fishkova, L.M., Nochnoe izluchenie sredneshirotnoi verkhnei atmosfery Zemli (Nightglow of the Earth's Medium-Latitude Upper Atmosphere), Tbilisi: Metsniereba, 1983, p. 272.

  12. Krassovsky, V.I., Shephov, N.N., and Yarin, V.I., Planet. Space Sci., 1962, vol. 9, p. 883.

    Google Scholar 

  13. Chamberlen, J., Fizika polyarnykh siyanii i izlucheniya atmosfery (Physics of Auroras and Airglow), Moscow: Inostrannaya Literatura, 1963, p. 778.

    Google Scholar 

  14. Granovskii, V.A. and Siraya, T.N., Metody obrabotki eksperimental'nykh dannykh (Methods for Processing Experimental Data), Leningrad: Energoatomizdat, 1990, p. 288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammosov, P.P., Gavrilyeva, G.A. Infrared Digital Spectrograph for Hydroxyl Rotational Temperature Measurements. Instruments and Experimental Techniques 43, 792–797 (2000). https://doi.org/10.1023/A:1026680119998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026680119998

Keywords

Navigation