Skip to main content
Log in

The Hidden Measurement Formalism: What Can Be Explained and Where Quantum Paradoxes Remain

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the hidden measurement formalism that we havedeveloped in Brussels we explain quantum structure asdue to the presence of two effects; (a) a real change ofstate of the system under influence of the measurement and (b) a lack of knowledge abouta deeper deterministic reality of the measurementprocess. We show that the presence of these two effectsleads to the major part of the quantum mechanical structure of a theory describing a physicalsystem, where the measurements to test the properties ofthis physical system contain the two mentioned effects.We present a quantum machine, with which we can illustrate in a simple way how the quantumstructure arises as a consequence of the two effects. Weintroduce a parameter that measures the amount of lackof knowledge on the measurement process, and by varying this parameter, we describe acontinuous evolution from a quantum structure (maximallack of knowledge) to a classical structure (zero lackof knowledge). We show that for intermediate values of∈ we find a new type of structure that isneither quantum nor classical. We analyze the quantumparadoxes in the light of these findings and show thatthey can be divided into two groups: (1) The group(measurement problem and Schrodinger cat paradox) where theparadoxical aspects arise mainly from the application ofstandard quantum theory as a general theory (e.g., alsodescribing the measurement apparatus). This type of paradox disappears in the hiddenmeasurement formalism. (2) A second group collecting theparadoxes connected to the effect of nonlocality (theEinstein-Podolsky-Rosen paradox and the violation of Bell's inequalities). We show that theseparadoxes are internally resolved because the effect ofnonlocality turns out to be a fundamental property ofthe hidden-measurement formalism itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Accardi, L. (1982). Nuovo Cimento, 34, 161.

    Google Scholar 

  • Accardi, L. (1984). The probabilistic roots of the quantum mechanical paradoxes, in The Wave–Particle Dualism, S. Diner et al., eds., Reidel, Dordrecht.

    Google Scholar 

  • Aerts, D. (1982). Lettere al Nuovo Cimento, 34, 107.

    Google Scholar 

  • Aerts, D. (1984). How do we have to change quantum mechanics in order to describe separated systems, in The Wave–Particle Dualism, S. Diner et al., eds., Reidel, Dordrecht.

    Google Scholar 

  • Aerts, D. (1985). A possible explanation for the probabilities of quantum mechanics and a macroscopic situation that violates Bell inequalities, in Recent Developments in Quantum Logic, P. Mittelstaedt et al., eds., Grundlagen der Exacten Naturwissenschaft en, Vol. 6, Wissenschaftverlag, Bibliographisch es Institut, Mannheim, p. 235.

    Google Scholar 

  • Aerts, D. (1986). Journal of Mathematical Physics, 27, 202.

    Google Scholar 

  • Aerts, D. (1987). The origin of the non-classical character of the quantum probability model, in Information, Complexity, and Control in Quantum Physics, A. Blanquiere, et al., eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Aerts, D. (1988a). The physical origin of the EPR paradox and how to violate Bell inequalities by macroscopic systems, in Symposium on the Foundations of Modern Physics, P. Lahti et al., eds., World Scientific, Singapore.

    Google Scholar 

  • Aerts, D., (1988b). The description of separated systems and a possible explanation of the probabilities of quantum mechanics, in Microphysical Reality and Quantum Formalism, A. van der Merwe et al., eds., Kluwer, Dordrecht.

    Google Scholar 

  • Aerts, D. (1991a). A macroscopic classical laboratory situation with only macroscopic classical entities giving rise to a quantum mechanical probability model, in Quantum Probability and related topics, Vol. VI, L. Accardi, ed., World Scientific, Singapore.

    Google Scholar 

  • Aerts, D. (1991b). Helvetica Physica Acta, 64, 1.

    Google Scholar 

  • Aerts, D. (1994). Foundations of Physics, 24, 1227.

    Google Scholar 

  • Aerts, D. (1995). International Journal of Theoretical Physics, 34, 1165.

    Google Scholar 

  • Aerts, D., and D'Hooghe, B. (1996). Operator structure of a nonquantum and a nonclassical system, International Journal of Theoretical Physics, 35, 2285.

    Google Scholar 

  • Aerts, D., and Durt, T. (1994a). Foundations of Physics, 24, 1353.

    Google Scholar 

  • Aerts, D., and Durt, T. (1994b). Quantum, classical and intermediate, a measurement model, in Proceedings of the Symposium on the Foundations of Modern Physics, Helsinki, 1994, K. V. Laurikainen, C. Montonen, and K. Sunnar Borg, eds., Editions Frontieres, Givessur-Yvettes, France.

    Google Scholar 

  • Aerts, D., Durt, T., and Van Bogaert, B. (1992). Tatra Mountains Mathematical Publications, 1, 5.

    Google Scholar 

  • Aerts, D., Durt, T., and Van Bogaert, B. (1993). Quantum probability, the classical limit and non locality, in Symposium on the Foundations of Modern Physics, T. Hyvonen, ed., World Scientific, Singapore.

    Google Scholar 

  • Aerts, D., Aerts, S., Coecke, B., and Valckenborgh, F. (1996a). The meaning of the violation of Bell's inequalities: Non-local correlation or quantum behavior? Preprint, CLEA, Vrije Universiteit Brussel, Brussels.

    Google Scholar 

  • Aerts, D., Coecke, B., Durt, T., and Valckenborgh, F. (1996b). Quantum, classical and intermediate; a model on the Poincaré sphere, in Proceedings of the Winter School on Measure Theory, Liptovski, 1995, Tatra Mountains Mathematical Publications, to be published.

  • Aerts, D., Coecke, B., Durt, T., and Valckenborgh, F. (1996c). Quantum, classical and intermediate; the vanishing vector space structure, in Proceedings of the Winter School on Measure Theory, Liptovski, 1995, Tatra Mountains Mathematical Publications, to be published.

  • Aerts, S. (1996). Conditional probabilities with a quantal and a Kolmogorovian limit, International Journal of Theoretical Physics, 35, 2201.

    Google Scholar 

  • Bell, J. (1964). Physics, 1, 195.

    Google Scholar 

  • Bohm, D., (1951). Quantum Theory, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Birkhoff, G., and Von Neumann, J. (1936). Annals of Mathematics, 37, 823.

    Google Scholar 

  • Coecke, B., (1995a). International of Theoretical Physics, 34, 1313.

    Google Scholar 

  • Coecke, B., (1995b). Foundations of Physics Letters, 8, 447.

    Google Scholar 

  • Coecke, B. (1996a). International Journal of Theoretical Physics, 35, 2371.

    Google Scholar 

  • Coecke, B., (1996b). A representation for compound quantum systems as individual entities: Hidden correlations, Preprint, CLEA, Free University of Brussels; submitted for publication.

  • Coecke, B., D'Hooghe, B., and Valckenborgh, F. (1996). Classical physical entities with a quantum description, in New Developments on Fundamental Problems in Quantum Physics, M. Ferrero and A. Van der Merwe, eds., Kluwer, Dordrecht.

    Google Scholar 

  • Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, Clarendon Press, Oxford.

    Google Scholar 

  • Einstein, A., Podolsky, B., and Rosen, N. (1935). Physical Review, 47, 777.

    Google Scholar 

  • Emch, G. G. (1984). Mathematical and Conceptual Foundations of 20th Century Physics, North-Holland, Amsterdam.

    Google Scholar 

  • Heisenberg, W. (1925). Zeitschrift für Physik, 33, 879.

    Google Scholar 

  • Pitovski, I. (1989). Quantum Probability–Quantum Logic, Springer-Verlag, Berlin.

    Google Scholar 

  • Schrödinger, E. (1926). Annalen der Physik, 79, 1926.

    Google Scholar 

  • Segal, I. E. (1947). Annals of Mathematics, 48, 930.

    Google Scholar 

  • Selleri, F. (1990). Quantum Paradoxes and Physical Reality, Kluwer, Dordrecht.

    Google Scholar 

  • Von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aerts, D. The Hidden Measurement Formalism: What Can Be Explained and Where Quantum Paradoxes Remain. International Journal of Theoretical Physics 37, 291–304 (1998). https://doi.org/10.1023/A:1026670802579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026670802579

Keywords

Navigation