Skip to main content
Log in

A Theory of Quantum (Statistical) Measurement

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a theory of quantum (statistical) measurement which is close, in spirit, to Hepp’s theory, which is centered on the concepts of decoherence and macroscopic (classical) observables, and apply it to a model of the Stern-Gerlach experiment. The number N of degrees of freedom of the measuring apparatus is such that \(N \rightarrow \infty \), justifying the adjective “statistical”, but, in addition, and in contrast to Hepp’s approach, we make a three-fold assumption: the measurement is not instantaneous, it lasts a finite amount of time and is, up to arbitrary accuracy, performed in a finite region of space, in agreement with the additional axioms proposed by Basdevant and Dalibard. It is then shown how von Neumann’s “collapse postulate” may be avoided by a mathematically precise formulation of an argument of Gottfried, and, at the same time, Heisenberg’s “destruction of knowledge” paradox is eliminated. The fact that no irreversibility is attached to the process of measurement is shown to follow from the author’s theory of irreversibility, formulated in terms of the mean entropy, due to the latter’s property of affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The author confirms that all the data supporting the findings of this study are available within the article.

References

  1. Doplicher, S.: The measurement process in local quantum physics and the EPR paradox. Commun. Math. Phys. 357, 407 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45, 237 (1972)

    Google Scholar 

  3. Basdevant, J.L., Dalibard, J.: Mécanique Quantique - Cours à l’école polytechnique. Les Éditions de lÉcole Polytechnique (2002)

  4. Gerlach, W., Stern, O.: Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Zeit. für Phys. 8, 110 (1921)

    ADS  Google Scholar 

  5. Araki, H., Yanase, M.: Measurement of quantum mechanical operators. Phys. Rev. 120, 622 (1960)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Wreszinski, W.F.: Irreversibility, the time-arrow and a dynamical proof of the second law of thermodynamics. Quant. Stud. Math. Found. 7, 125 (2020)

    MathSciNet  Google Scholar 

  8. Wreszinski, W.F.: The second law of thermodynamics as a deterministic theorem for quantum spin systems. Rev. Math. Phys. 33, 223005 (2022)

    Google Scholar 

  9. Daneri, A., Loinger, G.M., Prosperi, A.: Quantum theory of measurement. Nucl. Phys. 33, 297 (1962)

    MATH  Google Scholar 

  10. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  11. Narnhofer, H., Thirring, W.: Macroscopic purification of states by interactions. In: Atmanspacher, H., et al. (eds.) On Quanta, Mind and Matter. Springer, Dordrecht (1999)

    Google Scholar 

  12. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaf. 23, 807 (1935)

    ADS  MATH  Google Scholar 

  13. Bell, J.S.: Against “measurement". Phys. World 1, 33–40 (1990)

    Google Scholar 

  14. Gottfried, K.: Quantum Mechanics. Benjamin, New York (1966)

    Google Scholar 

  15. Heisenberg, W.: The Physical Principles of the Quantum Theory. University of Chicago Press, Chicago (1930)

    MATH  Google Scholar 

  16. Bell, J.S.: On wave-packet reduction in the Coleman–Hepp model. Helv. Phys. Acta 48, 93 (1975)

    MathSciNet  MATH  Google Scholar 

  17. Narnhofer, H., Wreszinski, W.F.: On reduction of the wave-packet, decoherence, irreversibility and the second law of thermodynamics. Phys. Rep. 541, 249 (2014)

    ADS  MathSciNet  Google Scholar 

  18. Sewell, G.L.: On the mathematical structure of quantum measurement theory. Rep. Math. Phys. 56, 271 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Sewell, G.L.: Can the quantum measurement problem be resolved within the framework of Schrödinger dynamics? Markov Proc. Rel. Fields 13, 425 (2007)

    ADS  MATH  Google Scholar 

  20. Gottfried, K., Yan, T.M.: Quantum Mechanics. Springer, Berlin (2003)

    MATH  Google Scholar 

  21. Gondran, M., Gondran, A.: A complete analysis of the Stern-Gerlach experiment using Pauli spinors. arXiv:quant-ph/0511276 (30-11-2005)

  22. Landau, L. D., Lifshitz, E. M.: Quantum Mechanics. 3rd ed., transl. by J. S. Bell, Pergamon Press (1977)

  23. Haag, R.: On the sharpness of localization of individual events in space and time. Found. Phys. 43, 1295 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Peierls, R.: In defense of “measurement". Phys. World 1, 19–20 (1991)

    Google Scholar 

  25. Lanford, O., Robinson, D.W.: Mean entropy of states in quantum statistical mechanics. J. Math. Phys. 9, 1120 (1968)

    ADS  MATH  Google Scholar 

  26. van Kampen, N.: Ten theorems about quantum mechanical measurements. Physica A 153, 97 (1988)

    ADS  MathSciNet  Google Scholar 

  27. Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  28. Sewell, G.L.: Quantum Theory of Collective Phenomena. Oxford University Press, Oxford (1986)

    Google Scholar 

  29. Roberts, J., Roepstorff, G.: Some basic concepts in algebraic quantum theory. Commun. Math. Phys. 11, 321 (1969)

    ADS  MATH  Google Scholar 

  30. Wightman, A.S.: Superselection rules: old and new. Nuovo Cim. B 110, 751 (1995)

    ADS  MathSciNet  Google Scholar 

  31. Fröhlich, J., Pizzo, A.: The time-evolution of states in quantum mechanics according to the ETH approach. Published online 23 October 2021 in Commun. Math. Phys

  32. Benoist, T., Cuneo, N., Jaksic, V., Pillet, C.A.: On entropy production of repeated quantum measurements II. Examples. J. Stat. Phys. 182, 44 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Hugenholtz, N.M.: States and representations in statistical mechanics. In: Streater, R.F. (ed.) Mathematics of Contemporary Physics. Academic Press, New York (1972)

    Google Scholar 

  34. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras II. Academic Press, New York (1986)

    MATH  Google Scholar 

  35. Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1987)

    Google Scholar 

  36. van Hemmen, L.: Linear fermion systems, molecular field models and the KMS condition. Fort. Phys. 26, 397 (1978)

    MathSciNet  Google Scholar 

  37. Takeda, Z.: Inductive limit and the infinite direct product of operator algebras. Tohôku Math. J. 7, 67 (1955)

    MathSciNet  MATH  Google Scholar 

  38. Royden, H.: Real Analysis. Macmillan, New York (1963)

    MATH  Google Scholar 

  39. Wehrl, A., Guénin, M., Thirring, W.: Introduction to algebraic techniques. Lectures given at theoretical seminar series CERN 68-69

  40. Guichardet, A.: Produits tensoriels infinis et répresentations des relations d’anticommutation. Ann. Sci. de l’E.N.S., 83:1 (1966)

  41. Schatten, R.: Norm Ideals of Completely Continuous Operators. Springer, Berlin (1960)

    MATH  Google Scholar 

  42. Choquet, G.: Cours de topologie, 2ème Dunod, Paris (2000)

    Google Scholar 

  43. Glimm, J., Kadison, R.V.: Unitary operators in C* algebras. Pac. J. Math. 10, 547 (1960)

    MathSciNet  MATH  Google Scholar 

  44. Schrödinger, E.: The Spirit of Science, in What is Life? And Other Scientific Essays, pp. 229–250. Anchor Books, Garden City (1965)

    Google Scholar 

  45. Lebowitz, J. L.: Time-asymmetric macroscopic behavior: an overview. In: Boltzmann’s Legacy, G. Gallavotti, W. L. Reiter and J. Yngvason, eds. Eur. Math. Soc. (2008)

  46. Peierls, R.: Surprises in Theoretical Physics. Princeton University Press, Princeton (1979)

    Google Scholar 

  47. Lamb, W.E., Jr.: An operational interpretation of nonrelativistic quantum mechanics. Phys. Today 22, 23 (1969)

    Google Scholar 

  48. Dell’Antonio, G.F., Doplicher, S., Ruelle, D.: A theorem on canonical commutation and anticommutation relations. Commun. Math. Phys. 2, 223 (1966)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Glimm, J., Jaffe, A.: The \((\lambda \Phi ^{4})_{2}\) quantum field theory without cutoffs III- the physical vacuum. Acta Math. 125, 203 (1970)

    MathSciNet  MATH  Google Scholar 

  50. Narnhofer, H., Thirring, W.: Entanglement, Bell inequality and all that. J. Math. Phys. 53, 095210 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Bertlmann, R.A., Narnhofer, H., Thirring, W.: A geometric picture of entanglement and Bell inequalities. Phys. Rev. A 66, 032319 (2002)

    ADS  MathSciNet  Google Scholar 

  52. Summers, S., Werner, R.: The vacuum violates Bell’s inequalities. Phys. Lett. A 110, 257 (1985)

    ADS  MathSciNet  Google Scholar 

  53. Landau, L.J.: On the violation of Bell’s inequality in quantum theory. Phys. Lett. A 120, 54 (1987)

    ADS  MathSciNet  Google Scholar 

  54. Wightman, A.S.: Some comments on the quantum theory of measurement. In: Guerra, F., Ioffredo, M.I., Marchioro, C. (eds.) Probabilistic Methods in Mathematical Physics. World Scientific, Singapore (1992)

    Google Scholar 

  55. Jäkel, C., Wreszinski, W.F.: A criterion to characterize interacting theories in the Wightman framework. Quant. Stud. Math. Found. 8, 51 (2021)

    MathSciNet  Google Scholar 

  56. Machida, S., Namiki, M.: Theory of measurement in quantum mechanics I. II. Progr. Theor. Phys. 63(1457), 1980 (1833)

    Google Scholar 

  57. Araki, H.: A remark on the Machida–Namiki theory of measurement. Progr. Theor. Phys. 64, 719 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Griffiths, R.B.: Nonlocality claims are inconsistent with Hilbert space quantum mechanics. Phys. Rev. A 101, 022117 (2020)

    ADS  MathSciNet  Google Scholar 

  59. Griffiths, R.B.: What quantum mechanical measurements measure. Phys. Rev. A 96, 032110 (2017)

    ADS  MathSciNet  Google Scholar 

  60. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Griffiths, R.B.: The consistent histories approach to quantum mechanics. Stanford Encyclopaedia of Philosophy (2019)

  62. Omnès, R.: Logical reformulation of quantum mechanics I, II, III. J. Stat. Phys. 53, 933–983 (1988)

    ADS  MATH  Google Scholar 

  63. Requardt, M.: An alternative to decoherence by environment and the appearance of a classical world. arXiv:1009.1220v2 (2002)

  64. Ludwig, G.: Geloeste und ungeloeste Probleme des Messprozesses in der Quantenmechanik. In: Bopp, F. (ed.) W. Heisenberg und die Physik unserer Zeit. Vieweg, Braunschweig (1961)

    Google Scholar 

Download references

Acknowledgements

We should like to thank Pedro L. Ribeiro for discussions, the late Derek W. Robinson for a correspondence in which he stressed the importance of the property of affinity, and Professor R. B. Griffiths for an enlightening correspondence on related matters. This paper owes very much to the remarks of both referees, which resulted in truly substantial improvements regarding the previous version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter F. Wreszinski.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest whatsoever regarding this paper: I am the only author with no funding, and nobody else, institution or individual, has contributed to it.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wreszinski, W.F. A Theory of Quantum (Statistical) Measurement. J Stat Phys 190, 64 (2023). https://doi.org/10.1007/s10955-023-03071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03071-0

Keywords

Navigation