Skip to main content
Log in

Molecular–Continuum Model for Calculating Chemical Hydration Enthalpy of the Cyanide Ion

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Structures of hydrate complexes (H2O) x CN(H2O) y , where x + y = 1–5 are optimized by the density functional method in the B3LYP version. It is shown that the nearest hydration sphere of the cyanide ion comprises four water molecules directly linked to the ion by hydrogen bonds. The chemical enthalpy of the hydration of the cyanide ion is calculated in the reactive-field continuum models (PCM and SCIPCM) and in other nonelectrostatic interactions. The calculation takes into account the electrostatic interaction between the hydrate complex and the solvent's dielectric surrounding. Calculation results are in good agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Simkin, B.Ya. and Sheikhet, I.I., Kvantovokhimicheskaya i statisticheskaya teoriya rastvorov: Vychislitel'nye metody i ikh primenenie (A Quantum-Chemical and Statistical Theory of Solutions: Computation Meethods and Their Applications), Moscow: Khimiya, 1989.

    Google Scholar 

  2. Car, R. and Parinello, M., Phys. Rev. Lett., 1985, vol. 55, p. 2471.

    Google Scholar 

  3. Vishomirskis, R.M., Kinetika elektroosazhdeniya metallov iz kompleksnykh elektrolitov (The Kinetics of Metal Electrodeposition from Complex-Composition Electrolytes), Moscow: Nauka, 1969.

    Google Scholar 

  4. Payzant, J.D., Yamdagni, R., and Kebarle, P., Can. J. Chem., 1971, vol. 49, p. 3308.

    Google Scholar 

  5. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Google Scholar 

  6. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B: Condens. Matter, 1988, vol. 37, p. 785.

    Google Scholar 

  7. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 98, Pittsburgh: Gaussian, 1998, Rev. A.7.

    Google Scholar 

  8. Hehre, W.J., Radom, L., Schleyer, P.V.R., and Pople, J.A., Ab Initio Molecular Orbital Theory, New York: Wiley, 1986, p. 350.

    Google Scholar 

  9. Del Bene, J.E., Struct. Chem., 1989, vol. 1, p. 19.

    Google Scholar 

  10. Foresman, J.B. and Frisch, A., Exploring Chemistry with Electronic Structure Methods, Pittsburgh: Gaussian, 1996, p. 302.

    Google Scholar 

  11. Dang, L.X., Rice, J.E., Caldwell, J., and Kollman, P.A., J. Am. Chem. Soc., 1991, vol. 113, p. 2481.

    Google Scholar 

  12. Sinanoglu, O., Theor. Chim. Acta, 1974, vol. 33, p. 279.

    Google Scholar 

  13. Miertus, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, p. 117.

    Google Scholar 

  14. Miertus, S. and Tomasi, J., J. Chem. Phys., 1982, vol. 65, p. 239.

    Google Scholar 

  15. Foresman, J.B., Keith, T.A., Wiberg, K.B., et al., J. Phys. Chem., 1996, vol. 100, p. 16 098.

    Google Scholar 

  16. Vasil'ev, V.P., Zolotarev, E.K., Kapustinskii, A.F., et al., Zh. Fiz. Khim., 1960, no. 8, p. 1763.

    Google Scholar 

  17. Kuznetsov, An.M., Maslii, A.N., and Shapnik, M.S., Elektrokhimiya, 2000, vol. 36, p. 1002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.M., Maslii, A.N. & Shapnik, M.S. Molecular–Continuum Model for Calculating Chemical Hydration Enthalpy of the Cyanide Ion. Russian Journal of Electrochemistry 36, 1303–1308 (2000). https://doi.org/10.1023/A:1026655731327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026655731327

Keywords

Navigation